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Abstract

Here we address the current issues of inefficiency and over-penalization in the massively 

univariate approach followed by the correction for multiple testing, and propose a more efficient 

model that pools and shares information among brain regions. Using Bayesian multilevel (BML) 

modeling, we control two types of error that are more relevant than the conventional false positive 

rate (FPR): incorrect sign (type S) and incorrect magnitude (type M). BML also aims to achieve 

two goals: 1) improving modeling efficiency by having one integrative model and thereby 

dissolving the multiple testing issue, and 2) turning the focus of conventional null hypothesis 

significant testing (NHST) on FPR into quality control by calibrating type S errors while 

maintaining a reasonable level of inference efficiency. The performance and validity of this 

approach are demonstrated through an application at the region of interest (ROI) level, with all the 

regions on an equal footing: unlike the current approaches under NHST, small regions are not 

disadvantaged simply because of their physical size. In addition, compared to the massively 

univariate approach, BML may simultaneously achieve increased spatial specificity and inference 

efficiency, and promote results reporting in totality and transparency. The benefits of BML are 

illustrated in performance and quality checking using an experimental dataset. The methodology 

also avoids the current practice of sharp and arbitrary thresholding in the p-value funnel to which 

the multidimensional data are reduced. The BML approach with its auxiliary tools is available as 

part of the AFNI suite for general use.

Introduction

The typical neuroimaging data analysis at the whole brain level starts with a preprocessing 

pipeline, and then the preprocessed data are fed into a voxel-wise time series regression 

model for each subject. An effect estimate is then obtained at each voxel as a regression 

coefficient that is, for example, associated with a task/condition or a contrast between two 

effects or a linear combination among multiple effects. Such effect estimates from individual 
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subjects are next incorporated into a population model for generalization, which can be 

parametric (e.g., Student’s t-test, AN(C)OVA, univariate (Poline and Brett, 2012) or 

multivariate GLM (Chen et al., 2014), linear mixed-effects (LME) (Chen et al., 2013)) or 

nonparametric (e.g., permutations (Nichols and Holmes, 2001; Smith and Nichols, 2009), 

bootstrapping, rank-based testing). In either case, this generally involves one or more 

statistical tests at each spatial element separately.

Issues with controlling false positives

As in many scientific fields, the typical neuroimaging analysis has traditionally been 

conducted under the framework of null hypothesis significance testing (NHST). As a 

consequence, a big challenge when presenting the population results is to properly handle 

the multiplicity issue resulting from the tens of thousands of simultaneous inferences, but 

this undertaking is met with various subtleties and pitfalls due to the complexities involved: 

the number of voxels in the brain (or a restricting mask) or the number of nodes on surface, 

spatial heterogeneity, violation of distributional assumptions, etc. The focus of the present 

work will be on developing an efficient approach from Bayesian perspective to address the 

multiplicity issue as well as some of the pitfalls associated with NHST (Appendix A). We 

first describe the multiplicity issue and how it directly results from the NHST paradigm and 

inefficient modeling, and then translate many of the standard analysis features to the 

proposed Bayesian framework.

Following the conventional statistical procedure, the assessment for a BOLD effect is put 

forward through a null hypothesis H0 as the devil’s advocate; for example, an H0 can be 

formulated as having no activation at a brain region under, for example, the easy condition, 

or as having no activation difference between the easy and difficult conditions. It is under 

such a null setting that statistics such as Student’s t- or F-statistic are constructed, so that a 

standard distribution can be utilized to compute a conditional probability that is the chance 

of obtaining a result equal to, or more extreme than, the current outcome if H0 is imagined 

as the ground truth. The rationale is that if this conditional probability is small enough, one 

may feel comfortable in rejecting the straw man H0 and in accepting the alternative at a 

tolerable risk.

While NHST may be a reasonable formulation under some scenarios, there is a long history 

of arguments that emphasize the mechanical and interpretational problems with NHST (e.g., 

Cohen, 2014; Gelman, 2016) that might have perpetuated the reproducibility crisis across 

many disciplines (Loken and Gelman, 2017). Within neuroimaging specifically, there are 

strong indications that a large portion of task-related BOLD activations are usually 

unidentified at the individual subject level due to the lack of power (Gonzalez-Castillo et al., 

2012). The detection failure, or false negative rate, at the population level would probably be 

at least as large. Therefore, it is likely far-fetched to claim that no activation or no activation 

difference exists anywhere in the whole brain, except for the regions of white matter and 

cerebrospinal fluid. In other words, the global null hypothesis in neuroimaging studies is 

virtually never true. The situation with resting-state data analysis is likely worse than with 

task-related data, as the same level of noise is more impactful on seed-based correlation 

analysis due to the lack of objective reference effect. Since no ground truth is readily 
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available, dichotomous inferences under NHST as to whether an effect exists in a brain 

region are intrinsically problematic, and it is practically implausible to truly believe the 

validity of H0 as a building block when constructing a model. Furthermore, the dichotomous 

filtering under NHST paints a biased picture in the literature and leads to suboptimal meta 

analyses that are already compromised without the incorporation or availability of effect 

reporting; for instance, conjunction analysis in neuroimaging is such an artificial dichotomy 

of overlapping brain regions under two or more conditions based on arbitrary thresholding.

Achieving statistical significance has been widely used as the standard screening criterion in 

scientific results reporting as well as in the publication reviewing process. The difficulty in 

passing a commonly accepted threshold with noisy data may elicit a hidden misconception: 

A statistical result that survives the strict screening with a small sample size seems to gain 

an extra layer of strong evidence, as evidenced by phrases in the literature such as “despite 

the small sample size” or “despite limited statistical power.” However, when the statistical 

power is low, the inference risks can be perilous, as demonstrated with two different types of 

error as illustrated in Appendix B from the conventional type I and type II errors: incorrect 

sign (type S) and incorrect magnitude (type M). The conventional concept of FPR 

controllability is not a well-balanced choice under all circumstances or combinations of 

effect and noise magnitudes. We consider a type S error to be more severe than a type M 

error, and thus we aim to control the former while at the same time reducing the latter as 

much as possible, parallel to the similarly lopsided strategy of strictly controlling type I 

errors at a tolerable level under NHST while minimizing type II errors.

Issues with handling multiplicity

In statistics, multiplicity is more often referred to as multiple comparisons or multiple 

testing problem when more than one statistical inference is made simultaneously. In 

neuroimaging, the multiplicity issue may sneak into data analysis through several channels 

(Appendix C), affecting expected FPRs in diverse ways. One widely recognized aspect of 

multi plicity, multiple testing, occurs when the investigator fits the same model for each 

voxel in the brain. However, multiplicity also occurs when the investigator conducts multiple 

comparisons within a model, tests two tails of a t-test separately when prior information is 

unavailable about the directionality, and branches in the analytic pipelines. The challenges of 

dealing with multiple testing at the voxel or node level have been recognized within the 

neuroimaging community almost as long as the history of FMRI. Substantial efforts have 

been devoted to ensuring that the actual type I error (or FPR) matches its nominal requested 

level under NHST. Due to the presence of spatial non-independence of noise, the classical 

approach to countering multiple testing through Bonferroni correction in general is highly 

conservative when applied to neuroimaging, so the typical correction efforts have been 

channeled into two main categories, 1) controlling for FWE, so that the overall FPR at the 

cluster or whole brain level is approximately at the nominal value, and 2) controlling for 

false discovery rate (FDR), which harnesses the expected proportion of identified items or 

discoveries that are incorrectly labeled (Benjamini and Hochberg, 1995). FDR can be used 

to handle a needle-in-haystack problem where a small number of effects existing among a 

sea of zero effects in, for example, bioinformatics. However, FDR is usually quite 
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conservative for typical neuroimaging data and thus is not widely adopted. Therefore, we do 

not discuss it hereafter in the current context.

Typical FWE correction methods for multiple testing include Monte Carlo simulations 

(Forman et al., 1995), random field theory (Worsley et al., 1992), and permutation testing 

(Nichols and Holmes, 2001; Smith and Nichols, 2009). Regardless of the specific FWE 

correction methodology, the common theme is to use the spatial extent, either explicitly or 

implicitly, as a pivotal factor. One recent study suggested that the nonparametric methods 

seem to have achieved a more uniformly accurate controllability for FWE than their 

parametric counterparts (Eklund et al., 2016), even though parametric methods may exhibit 

more flexibility in modeling capability (and some parametric methods can show reasonable 

FPR controllability; Cox et al., 2017). Because of this recent close examination (Eklund et 

al., 2016) on the practical difficulties of parametric approaches herein controlling FWE, 

there is currently an implied rule of thumb (e.g., Yeung, 2018) that demands any parametric 

correction be based on a voxel-wise p-value threshold at 0.001 or less. Such a narrow 

modeling choice with a harsh cutoff could be highly limiting, depending on several 

parameters such as trial duration (event-related versus block design), and would definitely 

make small regions even more difficult to pass through the NHST filtering system. In other 

words, the leverage on spatial extent with a Procrustean criterion undoubtedly incurs a 

collateral damage: small regions (e.g., amygdala) or subregions within a brain area are 

inherently placed in a disadvantageous position even if small regions have similar signal 

strength as larger ones; that is, to be able to surpass the same threshold bar, small regions 

would have to reach a much higher signal strength to survive a uniform criterion at the 

cluster threshold or whole brain level.

The concept of using contiguous spatial extent as a leveraging mechanism to control for 

multiplicity can be problematic from another perspective. For example, suppose that two 

anatomically separate regions are spatially distant and the statistical evidence (as well as 

signal strength) for each of their effects is not strong enough to pass the cluster correction 

threshold individually. However, if another two anatomically regions that have exactly the 

same statistical evidence (as well as signal strength) are adjacent, their spatial contiguity 

could elevate their combined volume to the survival of correction for FWE. Trade-offs are 

inherently involved in these final interpretations. One may argue that the sacrifice in 

statistical power under NHST is worth the cost in achieving the overall controllability of 

type I error, but it may be unnecessarily over-penalizing to stick to such an inflexible 

criterion rather than utilizing the neurological context or prior knowledge, as discussed 

below.

To summarize the debate surrounding cluster inferences, multiplicity is directly associated 

with the concept of false positives or type I errors under NHST, and the typical control for 

FWE at a preset threshold (e.g., 0.05, the implicitly accepted tolerance level in the field) is 

usually considered a safeguard for reproducibility. Imposing a threshold on cluster size 

(perhaps combined with signal strength) to protect against the overall FPR has the 

undesirable trade-off cost of inflating false negative rates or type II errors, which can greatly 

affect individual result interpretations as well as reproducibility across studies. The current 

practice of handling multiple testing through controlling the overall FPR in neuroimaging 
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under the null hypothesis significance testing (NHST) paradigm excessively penalizes the 

statistical power with inflated type II errors. More fundamentally, the adoption of 

dichotomous decisions through sharp thresholding under NHST may not be appropriate 

when the null hypothesis itself is not pragmatically relevant because the effect of interest 

takes a continuum instead of discrete values and is not expected to be null in most brain 

regions. When the noise inundates the signal, two different types of error are more relevant 

than the concept of FPR: incorrect sign (type S) and incorrect magnitude (type M). In 

general, several multiplicity-related challenges in neuroimaging appear to be tied closely to 

the fundamental mechanisms of NHST approaches introduced to counterbalance between 

two counterfactual errors (type I and type II), which are the cornerstones of NHST. 

Therefore, we put forward a list of potential problems with NHST in Appendix A.

Structure of the work

In light of the aforementioned backdrop, we believe that the current modeling approach is 

inefficient. First, we question the appropriateness of the severe penalty currently levied to 

the voxel- or node-wise data analysis. In addition, we endorse the ongoing statistical debate 

surrounding the ritualization of NHST and its dichotomous approach to results reporting and 

in the review process, and aim to raise the awareness of the issues embedded within NHST 

(Loken and Gelman, 2017) in the neuroimaging community. In addition, with the intention 

of addressing some of the issues discussed above, we view multiple testing as a problem of 

inefficient modeling induced by the conventional massively univariate methodology. 

Specifically, the univariate approach starts, in the same vein as a null hypothesis setting, 

with a pretense of spatial independence, and proceeds with many isolated or segmented 

models. To avoid the severe penalty of Bonferroni correction while recovering from or 

compensating for the false presumption of spatial independence, the current practices deal 

with multiple testing by discounting the number of models due to spatial relatedness. 

However, the collateral damages incurred by this to-and-fro process are unavoidably the loss 

of modeling efficiency and the penalty for detection power under NHST.

Here, we propose a more efficient approach through BML that could be used to confirm, 

complement or replace the standard NHST method. As a first step, we adopt a group 

analysis strategy under the Bayesian framework through multilevel modeling on an 

ensemble of ROIs and use this to resolve two of the four multiplicity issues above: multiple 

testing and double sidedness (Appendix C). Those ROIs are determined independently from 

the current data at hand, and they can be selected through various methods such as previous 

studies, an anatomical or functional atlas, or parcellation of an independent dataset in a 

given study; the regions could be defined through masking, manual drawing, or balls about a 

center reported previously. The proposed BML approach dissolves multiple testing through a 

multilevel model that more accurately accounts for data structure as well as shared 

information, and it consequentially improves inference efficiency. The modeling approach 

will be extended to other scenarios in our future work.

As a novel approach, BML here is applied to neuroimaging in dealing with multiplicity at 

the ROI level, with a potential extension to whole brain analysis in future work. We present 

this work in a purposefully (possibly overly) didactic style in the appendices, reflecting our 
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own conceptual progression. Our goal is to convert the traditional voxel-wise GLM into an 

ROI-based BML through a step-wise progression of models (GLM → LME → BML). The 

paper is structured as follows. In the next section, we first formulate the population analysis 

at each ROI through univariate GLM (parallel to the typical voxel-wise population analysis), 

then turn multiple GLMs into one LME by pivoting the ROIs as the levels of a random-

effects factor1, and lastly convert the LME to a full BML. The BML framework does not 

make statistical inferences for each measuring entity (ROI in our context) in isolation. 

Instead, the BML weights and borrows the information based on the precision information 

across the full set of entities, striking a balance between data and prior knowledge; in a 

nutshell, the crucial feature here is that the ROIs, instead of being loose, are associated with 

each other through a Gaussian assumption under BML. As a practical exemplar, we apply 

the modeling approach to an experimental dataset and compare its performance with the 

conventional univariate GLM. In the Discussion section, we elaborate the advantages, 

limitations, and prospects of BML in neuroimaging. Major acronyms and terms are listed in 

Table 1.

Theory: Bayesian multilevel modeling

Throughout this article, the word effect refers to a quantity of interest, usually embodied in a 

regression (or correlation) coefficient, the contrast between two such quantities, or the linear 

combination of two or more such quantities from individual subject analysis. Italic letters in 

lower case (e.g., α) stand for scalars and random variables; lowercase, boldfaced italic 

letters (a) for column vectors; Roman and Greek letters for fixed and random effects in the 

conventional statistics context, respectively, on the righthand side of a model equation (the 

Greek letter θ is reserved for the effect of interest); p(·) represents a probability density 

function.

Bayesian modeling for two-way random-effects ANOVA

As our main focus here is FMRI population analysis, we extend the BML approach for one-

way ANOVA (Appendix D) to a two-way ANOVA structure, and elucidate the advantages of 

data calibration and partial pooling in more details. At the population level, the variability 

across n subjects has to be accounted for; in addition, the within-subject correlation structure 

among the ROIs also needs to be maintained. The conventional approach formulates r 
separate GLMs each of which fits the data yij from the ith subject at the jth ROI,

yi j = θ j + ϵi j, i = 1, 2, …, n, (1)

where j = 1,2, …, r, θj is the population effect at the jth ROI, and ϵij is the residual term that 

is assumed to independently and identically follow 𝒩 0, σ2 . Each of the r models in (1) 

essentially corresponds to a Student’s t-test, and the immediate challenge is the multiple 

1In real practice, the ROIs are not randomly drawn from a hypothetical pool like recruiting experimental subjects. However, from the 
practical perspective it is not too far-fetched to assume that the effects at those ROIs form a distribution such as Gaussian, similar to 
the assumption of Gaussian distribution for cross-subject effects. It is under this assumption that we treat the cross-ROI effects as 
random, and the assumption can be further validated through various cross-validation methods and model comparisons later in this 
paper.
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testing issue among those r models: with the assumption of exchangeability among the 

ROIs, is Bonferroni correction the only valid solution? If so, most neuroimaging studies 

would have difficulty in adopting ROI-based analysis due to this severe penalty, which may 

be the major reason that discourages the use of region-level analysis with a large number of 

regions. Alternatively, the r separate GLMs in (1) can be merged into one GLM by pooling 

the variances across the r ROIs,

yi j = θ j + ϵi j, i = 1, 2, …, n, j = 1, 2, …, r . (2)

The two approaches, (1) and (2), usually render similar inferences unless the sampling 

variances are dramatically different across the ROIs. To compare different models through 

information criteria (Vehtari et al., 2017), we can solve the GLM (2) in a Bayesian fashion,

yi j θ j ∼ 𝒩 θ j, σ2 , i = 1, 2, …, n, j = 1, 2, …, r, (3)

where the effects θj are assigned with a noninformative prior so that no pooling is applied 

among the ROIs, leading to virtually identical inferences as the GLM (2).

The approach with model (1), (2), or (3) does not involve any pooling among the ROIs in the 

sense that the information at one ROI is assumed to reveal nothing about any other ROIs, 

and may lead to overfitting. To improve model fitting, we first adopt two-way random-

effects ANOVA, and formulate the following platform with data from n subjects,

yi j = b0 + πi + ξ j + ϵi j, i = 1, 2, …, n, j = 1, 2, …, r, (4)

where b0 represents the population effect, πi and ξj code the deviation or random effect of 

the ith subject and jth ROI from the overall mean b0, respectively, and they are assumed to 

be iid with2 𝒩 0, λ2  and 𝒩 0, τ2 , and ϵij is the residual term that is assumed to follow 

𝒩 0, σ2 .

Parallel to the situation with one-way ANOVA (Appendix D), the two-way ANOVA (4) can 

be conceptualized as an LME without changing its formulation. Specifically, the overall 

mean b0 is a fixed-effects parameter, while both the subject and ROI-specific effects, πi and 

ξj, are treated as random variables. When n, r ≥ 3, the number of data points nr is greater 

than the total number of model parameters, n+r+2, both the ANOVA and LME frameworks 

are identifiable. In addition, we continue to define θj = b0 + ξj as the effect of interest at the 

jth ROI. The LME framework has been well developed over the past half century, under 

which we can estimate variance components such as λ2 and τ2, and fixed effects such as b0 

in (4). Therefore, conventional inferences can be made by constructing an appropriate 

statistic for a null hypothesis. Its modeling applicability and flexibility have been 

substantiated by its adoption in FMRI group analysis (Chen et al., 2013). Furthermore, the 

LME formulation (4) has a special layout, a crossed random-effects (or cross-classified) 

2For simplicity, here we assume that both πi and ξj being independent and identically distributed (iid). In reality, the strict iid 
assumption can be problematic for the cross-ROI effects when they are spatially proximate or neurologically related. Nevertheless, the 
assumption can be relaxed later on to exchangeability for BML.
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structure, which has been applied to inter-subject correlation (ISC) analysis for naturalistic 

scanning (Chen et al., 2017a) and to ICC analysis for ICC(2,1) (Chen et al., 2017c). A 

hierarchical model is a particular multilevel model in which parameters are nested within 

one another, and the cross-classified structure here showcases the difference between the two 

conceptions: the two clusters (ROI and subjects) intertwine with each other and form a 

factorial structure (n subjects by r ROIs), distinct from a hierarchical or nested one.

However, LME cannot offer a solution in making inferences regarding the ROI effects θj: to 

estimate θj, the LME (4) would become over-parameterized (i.e., an over-fitting problem). 

To proceed for the sake of intuitive interpretations, we temporarily assume a known 

sampling variance σ2, a known cross-subjects variance λ2, and a known cross-ROI variance 

τ2, and transform the ANOVA (4) to its Bayesian counterpart,

yi j πi, θ j ∼ 𝒩 πi + θ j, σ2 , i = 1, 2, …, n, j = 1, 2, …, r . (5)

Then the posterior distribution of θj with prior distributions, πi ∼ 𝒩 0, λ2  and θ j ∼ 𝒩 b0, τ2 , 

can be analytically derived (Appendix E) with the data y = {yij},

θ j|b0, τ, λ, y ∼ 𝒩 θ j, V , where θ j =

n

λ2 + σ2 y ⋅ j + 1
τ2b0

n

λ2 + σ2 + 1
τ2

, V = 1
n

λ2 + σ2 + 1
τ2

, j

= 1, 2, …, r .

(6)

Similarly to the one-way ANOVA scenario (Appendix D), we have an intuitive interpretation 

for 1
V = n

λ2 + σ2 + 1
τ2 : the posterior precision for θj|b0, τ, λ, y is the sum of the cross-ROI 

precision 1
τ2  and the combined sampling precision n

λ2 + σ2 . Under the r completely separate 

GLMs in (1), the cross-subjects variance λ2 and the sampling variance σ2 could not be 

estimated separately. Interestingly, the following relationship,

n
λ2 + σ2 < 1

V = n
λ2 + σ2 + 1

τ2 ≤ n
σ2 + 1

τ2 , (7)

reveals that the posterior precision lies somewhere among the precisions of θ j from the r 

separate GLMs. Furthermore, the posterior mode of θ j in (6) can be expressed as a weighted 

average between the individual sample means y ⋅ j and the overall mean b0,
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θ j =

n

λ2 + σ2 y ⋅ j + 1
τ2b0

n

λ2 + σ2 + 1
τ2

= wy ⋅ j + (1 − w)b0 = b0 + w y ⋅ j − b0 = y ⋅ j − (1 − w

) y ⋅ j − b0 , j = 1, 2, …, r,

(8)

where the weight w = nV

λ2 + σ2 , indicating the counterbalance of partial pooling between the 

individual mean y ⋅ j for the jth entity and the overall mean b0, the adjustment of θj from the 

overall mean b0 toward the observed mean y ⋅ j, or the observed mean y ⋅ j being shrunk 

toward the overall mean b0.

Related to the concept of ICC, the correlation between two ROIs, j1 and j2, due to the fact 

that they are measured from the same set of subjects, can be derived in a Bayesian fashion 

as,

corr yi j1
, yi j2

λ2, τ2, σ2 =
cov πi + θ j1

+ ϵi j1
, πi + θ j2

+ ϵi j2

var πi + θ j1
+ ϵi j1

var πi + θ j2
+ ϵi j2

λ2, τ2, σ2

= λ2

λ2 + τ2 + σ2 , j1, j2 = 1, 2, …, r j1 ≠ j2 .

(9)

Similarly, the correlation between two subjects, i1 and i2, due to the fact that their effects are 

measured from the same set of ROIs, can be derived in a Bayesian fashion as,

corr yi1 j, yi2 j λ2, τ2, σ2 =
cov πi1

+ θ j + ϵi1 j, πi2
+ θ j + ϵi2 j

var πi1
+ θ j + ϵi1 j var πi2

+ θ j + ϵi2 j)
λ2, τ2, σ2

= τ2

λ2 + τ2 + σ2, i1, i2 = 1, 2, …, n i1 ≠ i2 .

The exchangeability assumption is crucial here as well for the BML system (4). Conditional 

on ξj (i.e., when the ROI is fixed at index j), the subject effects πi can be reasonably 

assumed to be exchangeable since the experiment participants are usually recruited 

randomly from a hypothetical population pool as representatives (thus the concept of coding 

them as dummy variables). As for the ROI effects ξj, here we simply assume the validity of 

exchangeability conditional on the subject effect πi (i.e., when subject is fixed at index i), 
and address the validity later in Discussion.
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To summarize, the main difference between the conventional GLM and BML lies in the 

assumption about the brain regions: the effects (e.g., θj in (3)) are assumed to have a 

noninformative flat prior while they are assigned with a Gaussian prior under BML. In other 

words, the effect at each region is estimated independently from other regions under GLM, 

thus there is no information shared across regions. In contrast, the effects across regions are 

shared, regularized and partially pooled through the Gaussian assumption under BML for 

the effects across regions; such a cross-region Gaussian assumption bears the same rationale 

as the cross-subject Gaussian assumption. So far, we have presented a “simplest” BML 

scenario. Specifically, we have: ignored the possibility of incorporating any explanatory 

variables such as subject-specific quantities (e.g., age, IQ) or behavioral data (e.g., reaction 

time); assumed known variances such as τ2 and σ2; and presumed that the data yij have been 

directly measured without precision information available. Further extensions are needed 

and discussed for realistic applications in the next subsection.

Further extensions of Bayesian modeling for two-way random-effects ANOVA and full 
Bayesian implementations

To gain intuitive interpretations, we have so far assumed that the variances σ2, λ2 and τ2 in 

(5) (and σ2 in (23) of Appendix D) are known. In practice, those parameters for the prior 

distributions are not available. Approximate (or empirical) Bayesian approaches could be 

adopted to provide a computationally economical “workaround” solution. For example, one 

possibility is to first solve the corresponding LME and directly apply the estimated variances 

to the analytical formula (6) (and (24) in Appendix D). However, there are two limitations 

associated with approximate Bayesian approaches. The reliability or uncertainty for the 

estimated variances are not taken into consideration and thus may result in inaccurate 

posterior distributions. In addition, analytical formulas such as (6) (and (24) in Appendix D) 

are usually not available when we extend the prototypical models (5) (and (23) in Appendix 

D) to more generic scenarios, as shown below.

At the population level, one may incorporate one or more subject-specific covariates such as 

subject-grouping variables (patients vs. controls, genotypes, adolescents vs. adults), within-

subject (e.g., multiple conditions such as positive, negative and neutral emotions) or 

quantitative explanatory variables (age, behavioral or biometric data). To be able to adapt 

such scenarios, we first need to expand the models considered previously with a simple 

intercept (Student’s t-test) to r separate GLMs and one GLM with pooled variances, 

generalizing the models (1) and (3), respectively, to

yi j = xi
Tθ j + ϵi j, i = 1, 2, …, n, (10)

yi j θ j ∼ 𝒩 xi
Tθ j, σ2 , i = 1, 2, …, n, j = 1, 2, …, r, (11)

where the vector xi contains the subject-specific values of the covariates, with its first 

component 1 that is associated with the intercept, and the vector θj codes the effects 

associated with the covariates xi (and each component in θj is assigned with a 
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noninformative prior in (11)), j = 1,2, …, r. In parallel, the conventional two-way random-

effects ANOVA or LME (4) evolves to

yi j = xi
Tb + πi + xi

Tξ j + ϵi j, i = 1, 2, …, n, j = 1, 2, …, r, (12)

where b and ξj represent the population effects and region-specific deviations corresponding 

to those covariates, respectively. Similarly, the BML counterpart can be formulated as

yi j xi, b, πi, ξ j ∼ 𝒩 xi
Tb + πi + xi

Tξ j, σ2 , πi ∼ 𝒩 0, λ2 , ξ j ∼ 𝒩(0, τ), i = 1, 2,
…, n, j = 1, 2, …, r,

(13)

where τ is a 2 × 2 variance-covariance matrix for ξj.

Under the BML (13), the effect of interest θj can be an element of b, the intercept (as in (5)) 

or the effect for one of the covariates xi. Similar to models with varying intercepts such as 

(4) and (5), both intercepts and slopes are assumed to be different across ROIs in the models 

(12) and (13), and they are usually referred to as models with varying intercepts and slopes. 

When there is only one covariate xi, the four models (10), (11), (12) and (13) simplify to, 

respectively,

yi j = θ0 j + θ1 jxi + ϵi j, i = 1, 2, …, n, (14)

yi j xi, θ0 j, θ1 j ∼ 𝒩 θ0 j + θ1 jxi, σ2 , i = 1, 2, …, n, j = 1, 2, …, r, (15)

yi j = b0 + b1xi + πi + ξ0 j + ξ1 jxi + ϵi j, i = 1, 2, …, n, j = 1, 2, …, r, (16)

yi j xi, b0, b1, πi, ξ0 j, ξ1 j ∼ 𝒩 b0 + b1xi + πi + ξ0 j + ξ1 jxi, σ2 , πi ∼ 𝒩 0, λ2 ,
ξ0 j, ξ1 j

T ∼ 𝒩 (0, 0)T, τ

i = 1, 2, …, n, j = 1, 2, …, r,
(17)

where τ is a 2 × 2 variance-covariance matrix for (ξ0j, ξ1j)T.

The discussion so far has assumed that data yij are directly collected without measurement 

errors. However, in some circumstances (including neuroimaging) the data are summarized 

through one or more analytical steps. For example, the data yij in FMRI can be the BOLD 

responses from subjects under a condition or task that are estimated through a time series 

regression model, and the estimates are not necessarily equally reliable. Therefore, a third 

extension is desirable to broaden our model (13) so that we can accommodate the situation 

where the separate variances σi j
2  of measurement errors for each ROI and subject are known 

and should be included in the model (13) as inputs, instead of being treated as one 

hyperparameter. Similarly to the conventional meta-analysis, a BML with known sampling 

variances can be effectively analyzed by simply treating the variances as known values.
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Numerical implementations of BML

Since no analytical formula is generally available for the BML (13), we proceed with the full 

Bayesian approach hereafter, and adopt the algorithms implemented in Stan, a probabilistic 

programming language and a math library in C++ on which the language depends (Stan 

Development Team, 2017). In Stan, the main engine for Bayesian inferences is No-U-Turn 

sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC) under the category of 

gradient-based Markov chain Monte Carlo (MCMC) algorithms.

Some conceptual and terminological clarifications are warranted here. Under the LME 

framework, the differentiation between fixed- and random-effects is clearcut: fixed-effects 

parameters (e.g., b in (12)) are considered universal constants at the population level to be 

estimated; in contrast, random-effects variables (e.g., πi and ξj in (12)) are assumed to be 

varying and follow a presumed distribution. However, there is no such distinction between 

fixed and random effects in Bayesian formulations, and all effects are treated as parameters 

and are assumed to have prior distributions. Nevertheless, there is a loose correspondence 

between LME and BML: fixed effects under LME are usually termed as population effects 

under BML, while random effects in LME are typically referred to as entity effects3 under 

BML.

Essentially, the full Bayesian approach for the BML systems (5) and (13) can be 

conceptualized as assigning hyperpriors to the parameters in the LME or ANOVA 

counterparts (4), and (12). Our hyperprior distribution choices follow the general 

recommendations in Stan (Stan Development Team, 2017). Specifically, an improper flat 

(noninformative uniform) distribution over the real domain for the population parameters 

(e.g., b in (13)) is adopted, since we usually can afford the vagueness thanks to the usually 

satisfactory amount of information available in the data at the population level. For the 

scaling parameters at the entity level, the variances for the cross-subjects effects πi and as 

well as in the variance covariance matrix for ξj in (13), we use a weakly informative prior 

such as a Student’s half-t(3,0,1)4 or half-Gaussian 𝒩(0, 1) (restricting to the positive half of 

the respective distribution). For the covariance structure of ξj, the LKJ correlation prior5 is 

used with the parameter ζ = 1 (i.e., jointly uniform over all correlation matrices of the 

respective dimension). Lastly, the variance for the residuals ϵij is assigned with a half 

Cauchy prior with a scale parameter depending on the standard deviation of yij.

To summarize, besides the Bayesian framework under which hyperpirors provide a 

computational convenience through numerical regularization, the major difference between 

BML and its univariate GLM counterpart is the Gaussian assumption for the ROIs (e.g., 

θ j ∼ 𝒩 b0, τ2  in the model (5)) that plays the pivotal role of pooling and sharing the 

3Entity effects are more popularly called group effects in the Bayesian literature. However, to avoid potential confusions with the 
neuroimaging terminology in which the word group refers to subject categorization (e.g., males vs. females, patients vs. controls) or 
the analytical step of generalization from individual subjects to the group (corresponding to the word population in the Bayesian 
literature) level, we adopt entity to mean each measuring unit such as subject and ROI in the current context.
4See https://en.wikipedia.org/wiki/Folded-t_and_half-t_distributions for the density p(ν; μ; σ2) of folded non-standardized t-
distribution, where the parameters ν; μ, and σ2 are the degrees of freedom, mean, and variance.
5The LKJ prior (Lewandowski, Kurowicka, and Joe, 2009) is a distribution over symmetric positive-definite matrices with the 
diagonals of 1s.
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information among the brain regions. It is this partial pooling that effectively takes 

advantage of the effect similarities among the ROIs and achieves higher modeling efficiency. 

In other words, we dissolve the multiple testing issue through borrowing information across 

the ROIs by incorporating the regions into one model with a prior assumption about their 

effects. In contrast, the inefficiency of the massively univariate approach lies in the fact that 

the modeler pretends that each voxel or ROI is unrelated and would have to pay the penalty 

for the pretense.

Another different aspect about Bayesian inference is that it hinges around the whole 

posterior distribution of an effect. For practical considerations in results reporting, modes 

such as mean and median are typically used to show the centrality, while a quantile-based 

(e.g., 95%) interval or highest posterior density provides a condensed and practically useful 

summary of the posterior distribution. The typical workflow to obtain the posterior 

distribution for an effect of interest is the following. Multiple (e.g., 4) Markov chains are 

usually run in parallel with each of them going through a predetermined number (e.g., 2000) 

of iterations, half of which are thrown away as warm-up (or “burn-in”) iterations while the 

rest are used as random draws from which posterior distributions are derived. To gauge the 

consistency of an ensemble of Markov chains, the split R statistic (Gelman et al., 2014) is 

provided as a potential scale reduction factor on split chains and as a diagnostic parameter to 

assist the analyst in assessing the quality of the chains. Ideally, fully converged chains 

correspond to R = 1.0, but in practice R < 1.1 is considered acceptable. Another useful 

parameter, the number of effective sampling draws after warm-up, measures the number of 

independent draws from the posterior distribution that would be expected to produce the 

same standard deviation of the posterior distribution as is calculated from the dependent 

draws from HMC. As the sampling draws are not always independent with each other, 

especially when Markov chains proceed slowly, one should make sure that the effective 

sample size is large enough relative to the total sampling draws so that a reasonable accuracy 

can be achieved to derive the quantile intervals for the posterior distribution. For example, a 

95% quantile interval requires at least an effective sample size of 100. As computing 

parallelization can only be executed for multiple chains of the HMC algorithms, the typical 

BML analysis can be effectively conducted on any system with at least 4 CPUs.

One important aspect of the Bayesian framework is model quality check through various 

prediction accuracy metrics. The aim of the quality check is not to reject the model, but 

rather to check whether it fits the data well. For instance, posterior predictive check (PPC) 

simulates replicated data under the fitted model and then graphically compares actual data 

yij to the model prediction. The underlying rationale is that, through drawing from the 

posterior predictive distribution, a reasonable model should generate new data that look 

similar to the acquired data at hand. As a model validation tool, PPC intuitively provides a 

visual tool to examine any systematic differences and potential misfit of the model, similar 

to the visual examination of plotting a fitted regression model against the original data. 

Leave-one-out (LOO) cross-validation using Pareto-smoothed importance sampling (PSIS) 

is another accuracy tool (Vehtari et al., 2017) that uses probability integral transformation 

(PIT) checks through a quantile-quantile (Q-Q) plot to compare the LOO-PITs to the 

standard uniform or Gaussian distribution.
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BML applied to an ROI-based group analysis

To demonstrate the performances of BML in comparison to the conventional univariate 

approach at the ROI level, we utilized an experimental dataset from a previous FMRI study 

(Xiao et al., 2018). Briefly, a cohort of 124 typically developing children (mean age = 6.6 

years, SD = 1.4 years, range = 4 to 8.9 years; 54 males) was scanned while they watched 

Inscapes, a movie paradigm designed for collecting resting-state data to reduce potential 

head motion. In addition, a subject-level covariate was included in the analysis: the overall 

theory of mind ability based on a parent-report measure (the theory of mind inventory, or 

ToMI). FMRI images were acquired with the following EPI scan parameters: B0 = 3 T, flip 

angle = 70 °, echo time = 25 ms, repetition time = 2000 ms, 36 slices, planar field of view = 

192 × 192 mm2, voxel size = 3.0 × 3.0 × 3.5 mm3, 210 volumes with a total scanning time of 

426 seconds. Twenty-one ROIs (Table 3) were selected from the literature because of their 

potential relevancy to the current study, and they were neither chosen nor defined per the 

whole brain analysis results of the current data. Mean Fisher-transformed z-scores were 

extracted at each ROI from the output of seed-based correlation analysis (seed: right 

temporo-parietal junction at the MNI coordinates of (50, −60, 18)) from each of the 124 

subjects. The effect of interest at the population level is the relationship at each brain region 

between the behavioral measure of the overall ToMI and the region’s association with the 

seed. A whole brain analysis showed the difficulty of some clusters surviving FWE 

correction (Table 2).

The data from the 21 ROIs were analyzed through the modeling triplets, GLMs (14) and 

(15), LME (16) and BML (17), with the effect of interest at the jth ROI being the 

relationship between ToMI and the ROI’s association with the seed: θ1j = b1 + ξ1j. The 

exchangeability assumption for LME and BML was deemed reasonable because, prior to the 

analysis, no specific information was available regarding the order and relatedness of the 

effects across subjects and ROIs. It is worth noting that the data were skewed with a longer 

right tail than left (black solid curve in Fig. 3a and Fig. 3b). When fitted at each ROI 

separately with GLM (simple regression in this case) using the overall ToMI as an 

explanatory variable, the model yielded lackluster fitting (Fig. 3a) in terms of skewness, the 

two tails, and the peak area. As shown in Fig. 1, five ROIs (R PCC, R TPJp, L IPL, L TPJ, 

and L aMTS/aMTG) reached a two-tailed significance level of 0.05, and two ROIs 

(PCC/PrC and vmPFC) achieved a two-tailed significance level of 0.1 (or one-tailed 

significance level of 0.05 if directionality was a priori known). However, the burden of FWE 

correction (e.g., Bonferroni) for the ROI-based approach with univariate GLM is so severe 

that none of the ROIs could survive the penalizing metric.

The ROI data were fitted with LME (16) and BML (17) using the overall ToMI as an 

explanatory variable through, respectively, the R (R Core Team, 2017) package lme4 (Bates 

et al., 2015) and Stan with the code translated to C++ and compiled. Runtime for BML was 

5 minutes including approximately 1 minute of code compilation on a Linux system (Fedora 

25) with AMD Opteron 6376 at 1.4 GHz. All the parameter estimates at the population level 

were quite similar between the two models (Table 4(a)), indicating that the weakly 

informative priors we adopt for hyperparameters in BML had little impact on parameter 

estimation. However, of interest here are the effects at the entity (i.e., ROI), not population, 
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level, which could be derived through BML but not LME. As for those effects at the ROI 

level, compared to the traditional ROI-based GLM, the shrinkage under BML can be seen in 

Fig. 1: most effect estimates were dragged toward the center. Similar to the ROI-based GLM 

without correction, BML demonstrated (Figures 1 and 2) strong evidence within 95% 

quantile interval of the overall ToMI effect at six ROIs (R PCC, R TPJp, L IPL, PCC/PrC, L 

TPJ, and L aMTS/aMTG), and within 90% (or 95% if directionality was a priori known) 

quantile interval at two additional ROIs (dmMPFC and vmPFC).

One exception to the general shrinkage under BML is that the median effect, 0.025, at the 

region of R TPJp (second row in the table and box plot of Fig. 1) was actually higher than 

that under GLM, 0.018. Such an exception occurred because the final result is a combination 

or a tug of war between the shrinkage impact as shown in (8) and the correlation structure 

among the ROIs as shown in (9). Noticeably, the quality and fitness of BML can be 

diagnosed and verified through posterior predictor check (Fig. 3a and Fig. 3b) that compares 

the observed data with the simulated data based on the model: not only did BML 

accommodate the skewness of the data better than GLM, but also did the partial pooling 

render much better fit for the peak and both tails as well. Cross validation through LOO 

(Table 4(b), Fig. 3c and Fig. 3d) also manifested the advantage of BML fitting over GLM. 

Nevertheless, there is still room for the improvement of BML: the peak area could be fitted 

better, which may require nonlinearity or incorporating other potential covariates.

One apparent aspect that the ROI-based BML excels is the completeness and transparency in 

results reporting: if the number of ROIs is not overwhelming (e.g., less than 100), the 

summarized results for every ROI can be completely presented in a tabular form (c.f. Fig. 1) 

and in full distributions of posterior density (Fig. 2). It is worth emphasizing that Bayesian 

inferences focus less on the point estimate of an effect and its associated quantile interval, 

but more on the whole posterior density as shown in Fig. 2 that offers more detailed 

information about the effect uncertainty. Unlike the whole brain analysis in which the results 

are typically reported as the tips of icebergs above the water, posterior density reveals the 

spread, shape and skewness regardless of the statistical evidence. In addition, one does not 

have to stick to a single harsh thresholding when deciding a criterion on the ROIs for 

discussion; for instance, even if an ROI lies outside of, but close to, the 95% quantile 

interval (e.g., dmMPFC and vmPFC in Figures 1 and 2), it can still be reported and 

discussed as long as all the details are revealed. Such flexibility and transparency are 

difficult to navigate or maneuver through cluster thresholding at the whole brain level. As a 

counterpart to NHST, a probability metric could still be provided for each effect under BML 

in the sense as illustrated in Table 5; however, we opt not to do so for two reasons: 1) such a 

probability measure could be easily misinterpreted in the NHST sense, and, more 

importantly, 2) it is the predictive intervals shown in Fig. 1 and the complete posterior 

distributions illustrated in Fig. 2, not the single probabilities, that fully characterize the 

posterior distribution, providing richer information than just binary (“in or out”) 

thresholding.

Interestingly, those four regions (L IPL, L TPJ, R PCC, PCC/PrC) that passed the FWE 

correction at the voxel-wise p-cutoff of 0.005 (Table 2) in the whole brain analysis were 

confirmed with the ROI-based BML (Figures 1 and 2). Moreover, another four regions (L 
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aMTS/aMTG, R TPJp, vmPFC, dmPFC) revealed some evidence of ToMI effect under 

BML. In contrast, these four regions did not stand out in the whole brain analysis after the 

application of FWE correction at the cluster level regardless of the voxel-wise p-threshold 

(Table 2), even though they would have been evident if the cluster size requirement were not 

as strictly imposed.

Discussion

Applied to the neuroimaging context, BML adopts partial pooling and can be considered as 

a trade-off between two extreme modeling choices (Appendix D): complete pooling and no 

pooling. Complete pooling assumes no variations among the entities (voxels, regions, or 

surface nodes); that is, all entities are assumed to be identical or homogeneous. Because of 

the omnipresence of regional heterogeneity in the brain, nobody would be interested in such 

a modeling strategy in neuroimaging, but it serves here as an extreme anchor for the 

convenience of comparison. In contrast, no pooling, currently adopted in massively 

univariate modeling, fully trusts the data, and offers the best fit separately for each 

individual entity to the current data at hand. As a consequence, each entity is considered 

autonomous and independent with each other in the analytical model. To some extent, the 

current approaches pool the information across the neighboring voxels in the step of 

controlling FPR through clusterization. However, there are two huge disadvantages 

associated with no pooling: it carries the risk of overfitting, poor inference or prediction for 

future data; and, to control for multiplicity and overconfidence, the current approaches 

compromise in efficiency by paying the price in over-penalizing small regions through 

leveraging the spatial extent.

Through an adaptively regularizing prior (e.g., Gaussian distribution among brain regions), 

partial pooling achieves a counterbalance between homogenization and autonomy. 

Specifically, BML treats each entity as a substantiation generated through a random process 

that adaptively regularizes the entities, and it conservatively pools the effect of each entity 

toward the center. In other words, the methodology sacrifices model performance in the form 

of a poorer fit in samples (observed data) for the sake of better interfere and better fit 

(prediction) out of samples (future data) through partial pooling (McElreath, 2016). 

Therefore, BML may fit each region individually worse than univariate GLM, but BML 

excels in collective fitting and overall model performance. It is this counterbalance through 

regularization that effectively controls the errors of incorrect sign and incorrect magnitude; 

and as a byproduct, BML leverages the multiplicity issue and equally treats all regions 

purely based on their signal strength, regardless of their spatial size.

Current approaches to correcting for FPR

Arbitrariness is involved in the multiple testing correction of parametric methods. In the 

conventional statistics frame work, the thresholding bar ideally plays the role of winnowing 

the wheat (true effect6) from the chaff (random noise), and a p-value of 0.05 is commonly 

adopted as a benchmark for comfort in most fields. However, one big problem facing the 

6Needless to say, the concept of true effect only makes sense under the current model framework at hand, and may not hold once the 
model is revised.
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correction methods for multiple testing is the arbitrariness surrounding the thresholding, in 

addition to the arbitrariness of 0.05 itself. Both Monte Carlo simulations and random field 

theory start with a voxel-wise probability threshold (e.g., 0.01, 0.005, 0.001) at the voxel (or 

node) level, and a spatial threshold is determined in cluster size so that overall FPR can be 

properly controlled at the cluster level. If clusters are analogized as islands, each of them 

may be visible at a different sea level (voxel-wise p-value). As the cluster size based on 

statistical filtering plays a leveraging role, with a higher statistical threshold leading to a 

smaller cluster cutoff, a neurologically or anatomically small region can only gain ground 

with a low p-value while large regions with a relatively large p-value may fail to survive the 

criterion. Similarly, a lower statistical threshold (higher p) requires a higher cluster volume, 

so smaller regions have little chance of reaching the survival level. In addition, this 

arbitrariness in statistical threshold at the voxel level poses another challenge for the 

investigator: one may lose spatial specificity with a low statistical threshold since small 

regions that are contiguous may get swamped by the overlapping large spatial extent; on the 

other hand, sensitivity may have to be compromised for large regions with low statistic 

values when a high statistical threshold is chosen. A recent critique on the rigor of cluster 

formation through parametric modeling (Eklund et al., 2016) has resulted in a trend to 

require a higher statistical thresholding bar (e.g., with the voxel-wise threshold below 0.005 

or even 0.001); however, the arbitrariness persists because this trend only shifts the 

probability threshold range.

Permutation testing is limited in modeling capability. For example, it shares the same 

limitations as univariate GLM in handling missing data and sophisticated random-effects 

structures; in addition, it does not have an effective approach to taking into consideration the 

reliability of effect estimates. Furthermore, it has its share of arbitrariness in multiple testing 

correction too. As an alternative to parametric methods, an early version of permutation 

testing (Nichols and Holmes, 2001) bears similar arbitrary issues. It starts with the 

construction of a null distribution through permutations in regard to a maximum statistic 

(either maximum testing statistic or maximum cluster size based on a predetermined 

threshold for the testing statistic). The original data are assessed against the null distribution, 

and the top winners at a designated rate (e.g., 5%) among the testing statistic values or 

clusters will be declared as the surviving ones. While the approach is effective in 

maintaining the nominal FWE level, two problems are embedded with the strategy. First of 

all, the spatial properties are not directly taken into consideration in the case of maximum 

testing statistic. For example, an extreme case to demonstrate the spatial extent issue is that a 

small cluster (or even a single voxel) might survive the permutation testing as long as its 

statistic value is high enough (e.g., t(20) = 6.0) while a large cluster with a relatively small 

maximum statistic value (e.g., t(20) = 2.5) would fail to pass the filtering. The second issue 

is the arbitrariness involved in the primary thresholding for the case of maximum cluster 

size: a different primary threshold may end up with a different set of clusters. That is, the 

reported results may likely depend strongly on an arbitrary threshold. Addressing these two 

problems, a later version of permutation testing (Smith and Nichols, 2009) takes an 

integrative consideration between signal strength and spatial relatedness, and thus solves 

both problems involving the earlier version of permutation testing7. Such an approach has 

been implemented in programs such as Randomise and PALM in FSL using threshold-free 
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cluster enhancement (TFCE) (Smith and Nichols, 2009) and in 3dttest++ in AFNI using 

equitable thresholding and clusterization (ETAC) (Cox, 2018). Nevertheless, the adoption of 

permutations in neuroimaging, regardless of the specific version, is not directly about the 

concern of distribution violation as in the classical nonparametric setting (in fact, a pseudo-t 
value is still computed at each voxel in the process); rather, it is the randomization among 

subjects in permutations that creates a null distribution against which the original data can be 

tested at the whole brain level.

We argue that spatial size as a correction leverage unnecessarily pays the cost of lower 

identification power to achieve the nominal false positive level. All of the current correction 

methods, parametric and nonparametric, are still meant to use spatial extent or the 

combination of spatial extent and signal strength as a filter to control the overall FPR at the 

whole brain level. They all share the same hallmark of sharp thresholding at a preset 

acceptance level (e.g., 5%) under NHST, and they all use spatial extent as a leverage, 

penalizing regions that are anatomically small and rewarding large smooth regions (Cremers 

et al., 2017). The combination of signal strength and spatial extent adopted in the recent 

permutation methods such as TFCE and ETAC are advantageous in addressing the issue of 

arbitrariness of primary thresholding in the cluster-based correction methods and the 

primary permutation approach. Nevertheless, such a method of “extent and height” still 

discriminates spatially small regions, even though less so. For instance, between two brain 

regions with the same signal strength, the anatomically larger one would be easier to pass 

the current approaches including TFCE and ETAC than its smaller counterpart; between one 

case with one isolated region and another with two or more contiguous regions, the former 

may fail to pass the current filtering methods even with a stronger signal strength. Due to the 

unforgiving penalty of correction for multiple testing, some workaround solutions have been 

adopted by focusing the correction on a reduced domain instead of the whole brain. For 

example, the investigator may limit the correction domain to gray matter or regions based on 

previous studies. Putting the justification for these practices aside, accuracy is a challenge in 

defining such masks; in addition, spatial specificity remains a problem, shared by the typical 

whole brain analysis, although to a lesser extent.

Questionable practices of correction for FPR under NHST

Univariate GLM is inefficient in handling neuroimaging data. It may work reasonably well if 

the following two conditions can be met: 1) no multiple testing, and 2) high signal-to-noise 

ratio (strong effect and high precision measurement) as illustrated in the lower triangular 

part of the table or right side of the curves in Fig. 4 (Appendix B). However, neither of the 

two conditions is likely satisfied with typical neuroimaging data. Due to the stringent 

requirements of correction for multiple testing across thousands of resolution elements in 

neuroimaging, a daunting challenge facing the community is the power inefficiency or high 

type II errors under NHST. Even if prior information is available as to which ROIs are 

potentially involved in a study, an ROI-based univariate GLM would still be obliged to share 

the burden of correction for multiplicity equally and agnostically to any such knowledge. 

The modeling approach usually does not have the luxury to survive the penalty, as shown 

7A single voxel is still possible, but much less likely, to survive this correction approach.
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with our experimental data in the table of Fig. 1, unless only a few ROIs are included in the 

analysis. Furthermore, with many low-hanging fruits with relatively strong signal strength 

(e.g., 0.5% signal change or above) having been largely plucked, the typical effect under 

investigation nowadays is usually subtle and likely small (e.g., in the neighborhood of 0.1% 

signal change). Compounded with the presence of substantial amount of noise and 

suboptimal modeling (e.g., ignoring the HDR shape subtleties), detection power is usually 

low. It might be counterintuitive, but one should realize that the noisier or more variable the 

data, the less one should be confident about any inferences based on statistical significance, 

as illustrated with the type S and type M errors in Figure 5 (Appendix B). With fixed 

threshold correction approaches, small regions are hard to funnel through the FPR criterion 

even if their effect magnitude is the same as or even higher than those larger regions. Even 

for approaches that take into consideration both spatial extent and effect magnitude (TFCE, 

ETAC), small regions remain disadvantaged when their effect magnitude is at the same level 

as their larger counterparts.

Furthermore, dichotomous thinking and decision-making under NHST are usually not fully 

compatible with the underlying mechanism under investigation. Current knowledge 

regarding brain activations has not reached a point where one can make accurate 

dichotomous claims as to whether a specific brain region under a condition is activated or 

not; lack of underlying “ground truth” has made it difficult to validate any but the most basic 

models. The same issue can be raised about the binary decision as to whether the response 

difference under two conditions is either the same or different. Therefore, a pragmatic 

mission is to detect activated regions in terms of practical, instead of statistical, significance. 

The conventional NHST runs against the idealistically null point H0, and declares a region 

having no effect based on statistical significance with a safeguard set for type I error. When 

the power is low, not only reproducibility will suffer, but also the chance of having an 

incorrect sign for a statistically significant effect be substantial (Fig. 4 and Fig. 5). Only 

when the power reaches 30% or above does the type S error rate become low. Publication 

bias due to the thresholding funnel contributes to type S and type M errors as well. The 

sharp thresholding imposed by the widely adopted NHST strategy uses a single threshold 

through which a high-dimension dataset is funneled. An ongoing debate has been simmering 

for a few decades regarding the legitimacy of NHST, ranging from cautionary warning 

against misuses of NHST (Wasserstein and Lazar, 2016), to tightening the significance level 

from 0.05 to 0.005 (Benjamin et al., 2017), to totally abandoning NHST as a gatekeeper 

(McShare et al., 2017; Amrhein and Greenland, 2017). The poor controllability of type S 

and type M errors is tied up with widespread problems across many fields. It is not a 

common practice nor a requirement in neuroimaging to report the effect estimates; therefore, 

power analysis for a brain region under a task or condition is largely obscure and 

unavailable, let alone the assessment of type S and type M errors.

Lastly, reproducibility may deteriorate through inefficient modeling and dichotomous 

inferences. Relating the discussion to the neuroimaging context, the overall or global FPR is 

the probability of having data as extreme as or more extreme than the current result, under 

the assumption that the result was produced by some “random number generator,” which is 

built into algorithms such as Monte Carlo simulations, random field theory, and randomly 

shuffled data as pseudo-noise in permutations. It boils down to the question: are the data 
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truly pure noise (even though spatially correlated to some extent) in most brain regions? 

Since controlling for FPR hinges on the null hypothesis of no effect, p-value itself is a 

random variable that is a nonlinear continuous function of the data at hand, therefore it has a 

sampling distribution (e.g., uniform(0,1) distribution if the null model is true). In other 

words, it might be under-appreciated that even identical experiments would not necessarily 

replicate an effect that is dichotomized in the first one as statistically significant (Lazzeroni 

et al., 2016). The common practice of reporting only the statistically significant brain 

regions and comparing to those nonsignificant regions based on the imprimatur of statistic- 

or p-threshold can be misleading: the difference between a highly significant region and a 

nonsignificant region could simply be explained by pure chance. The binary emphasis on 

statistical significance unavoidably leads to an investigator only focusing on the significant 

regions and diverting attention away from the nonsignificant ones. More importantly, the 

traditional whole brain analysis usually leads to selectively report surviving clusters 

conditional on statistical significance through dichotomous thresholding, potentially 

inducing type M errors, biasing estimates with exaggerated effect magnitude, as illustrated 

in Fig. 5. Rigor, stringency, and reproducibility are lifelines of science. We think that there is 

more room to improve the current practice of NHST and to avoid information waste and 

inefficiency. Because of low power in FMRI studies and the questionable practice of 

binarized decisions under NHST, a Bayesian approach combined with integrative modeling 

offers a platform to more accurately account for the data structure and to leverage the 

information across multiple levels.

What Bayesian modeling offers

Bayesian inferences are usually more compatible with the research, not null, hypothesis. 

Almost all statistics consumers (including the authors of this paper) were a priori trained 

within the conventional NHST paradigm, and their mindsets are usually familiar with and 

entrenched within the concept and narratives of p-value, type I error, and dichotomous 

interpretations of results. Out of the past shadows cast by the theoretical and computation 

hurdles, as well as the image of subjectivity, Bayesian methods have gradually emerged into 

the light. One direct benefit of Bayesian inference, compared to NHST, is its concise, 

intuitive and straightforward interpretation, as illustrated in Table 5. For instance, among its 

controversies (Morey et al., 2016), the conventional confidence interval weighs equally all 

possible values a parameter could take within the interval, regardless of how implausible 

some of them are; in contrast, the quantile interval under Bayesian framework is more subtly 

expressed through the corresponding posterior density (Fig. 2). Even though the NHST 

modeling strategy literally falsifies the straw man H0, the real intention is to confirm the 

alternative (or research) hypothesis through rejecting H0; in other words, the falsification of 

H0 is only considered an intermediate step under NHST, and the ultimate goal is the 

confirmation of the intended hypothesis. In contrast, under the Bayesian paradigm, the 

investigator’s hypothesis is directly placed under scrutiny through incorporating prior 

information, model checking and revision. Therefore, the Bayesian paradigm is more 

fundamentally aligned with the hypothetico-deductivism axis along the classic view of 

falsifiability or refutability by Karl Popper (Gelman and Shalizi, 2013).
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In addition to interpretational convenience, Bayesian modeling is less vulnerable to the 

amount of data available and to the issue of multiple testing. Conventional statistics heavily 

relies on large sample size and asymptotic property; in contrast, Bayesian inferences bear a 

direct interpretation conditional on the data regardless of sample size. Practically speaking, 

should we fully “trust” the effect estimate at each ROI or voxel at its face value? Some may 

argue that the effect estimate from the typical neuroimaging individual or population 

analysis has the desirable property of unbiasedness, as asymptotically promised by central 

limit theory. However, in reality the asymptotic behavior requires a very large sample size, a 

luxury difficult for most neuroimaging studies to reach. As the determination of a reasonable 

sample size depends on signal strength, brain region, and noise level, the typical sample size 

in neuroimaging tends to get overstretched, creating a hotbed for a low power situation and 

potentially high type S and type M errors. Another fundamental issue with the conventional 

univariate modeling approach in neuroimaging is the two-step process: first, pretend that the 

voxels or nodes are independent with each other, and build a separate model for each spatial 

element; then, handle the multiple testing issue using spatial relatedness to only partially, not 

fully, recoup the efficiency loss. In addition to the conceptual novelty for those with little 

experience outside the NHST paradigm, BML simplifies the traditional two-step workflow 

with one integrative model, fully shunning the multiple testing issue.

Through integrative incorporation across ROIs, the BML approach renders conservative 

effect estimation in place of controlling FPR. Unlike the p-value under NHST, which 

represents the probability of obtaining the current data generated by an imaginary machinery 

(e.g., assuming that no effect exists), a posterior distribution for an effect under the Bayesian 

framework directly and explicitly shows the uncertainty of our current knowledge 

conditional on the current data and the prior model. From the Bayesian perspective, we 

should not put too much faith in point estimates. In fact, not only should we not fully trust 

the point estimates from GLM with no pooling, but also should we not rely too much on the 

centrality (median, mean) of the posterior distribution from a Bayesian model. Instead, the 

focus needs to be placed more on the uncertainty, which can be visualized through the 

posterior distributions or characterized by the quantile intervals of the posterior distribution 

if summarization is required. Specifically, BML, as demonstrated here with the ROI data, is 

often more conservative in the sense that it does not “trust” the original effect estimates as 

much as GLM, as shown in Fig. 1; additionally, in doing so, it fits the data more accurately 

than the ROI-based GLM (Table 4(b) and Fig. 3). Furthermore,, the original multiple testing 

issue under the massively univariate platform is deflected within one unified model: it is the 

type S, not type I, errors that are considered crucial and controlled under BML. Even though 

the posterior inferences at the 95% quantile interval in our experimental data were similar to 

the statistically significant results at the 0.05 level under NHST, BML in general is more 

statistically conservative than univariate GLM under NHST, as shown with the examples in 

Gelman et al. (2012).

We reiterate that the major difference is the assumption about the brain regions: 

noninformitive flat prior for the conventional GLM versus the Gaussian assumption for 

BML. With a uniform prior, all values on the real axis are equally likely; therefore, no 

information is shared across regions under GLM. On the other hand, it is worth mentioning 

that the Gaussian assumption for the priors including the likelihood under a Bayesian model 
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is based on two considerations: one aspect is convention and pragmatism, and the other 

aspect is the fact that, per maximum entropy principle, the most conservative distribution is 

Gaussian if the data have a finite variance (McElreath, 2016). However, a Bayesian model 

tends to be less sensitive to the model (likelihood or prior for the data in Bayesian 

terminology); in other words, even though the true data-generating process is always 

unknown, a model is only a convenient framework or prior knowledge to start with the 

Bayesian updating process so that a Bayesian model is usually less vulnerable to assumption 

violations. In contrast, statistical inferences with conventional approaches heavily rely on the 

sampling distribution assumptions. Through adaptive regularization, BML achieves a goal to 

trade off poorer fit in sample for better inference and improved fit out of sample (McElreath, 

2016); the amount of regularization is learned from the data through partial pooling that 

embodies the similarity assumption of effects among the brain regions. From the NHST 

perspective, BML can still commit type I errors, and its FPR could be higher under some 

circumstances than, for example, its GLM counterpart. Such type I errors may sound 

alarmingly serious; however, the situation is not as severe as its appearance for two reasons: 

1) the concept of FPR and the associated model under NHST are framed with a null 

hypothesis, which is not considered pragmatically meaningful in the Bayesian perspective; 

and 2) in reality, inferences under BML most likely have the same directionality as the true 

effect because type S errors are well controlled across the board under BML (Gelman and 

Teulinckx, 2000). Just consider which of the following two scenarios is worse: (a) when 

power is low, the likelihood under the NHST to mistakenly infer that the BOLD response to 

easy condition is higher than difficult could be sizable (e.g., 30%), and (b) with the type S 

error rate controlled below, for example, 3.0%, the BML might exaggerate the magnitude 

difference between difficult and easy conditions by, for example, 2 times. While not 

celebrating the scenario (b), we expect that most researchers would view the scenario (a) as 

more problematic.

Prior assignment is an intrinsic component of Bayesian modeling. As the priors are non-

informative for the parameters of the BML models considered here at the population level, 

there is no extra information injected. Therefore, one somewhat controversial aspect of 

Bayesian modeling is the adoption of a prior for each hyperparameter at the entity level, and 

that the prior is meshed with the data and gets updated into the posterior distribution. Some 

may consider that an Achilles’ heel of Bayesian modeling is its subjectivity with respect to 

prior selection at the entity level. First of all, we would argue that, to start with, every model, 

Bayesian or non-Bayesian, is a prior or likelihood function in the sense that the analyst 

presumes a distribution for the data (e.g., Gaussian distribution in the conventional GLMs 

(1), (2), and (3)). Secondly, weakly informative priors are even routinely adopted by 

conventional statistics in approaches such as penalized likelihood in ridge regression and 

LASSO. Priors are chosen, evaluated and revised just as any components and assumptions in 

the model. The inherent subjectivity of BML is no more than are model assumptions (e.g. 

Gaussian distribution) for convectional statistics as well as different opinions of analytical 

approaches, different outliers handling methods and processing steps in neuroimaging. 

Furthermore, priors are applied at the epistemological, not ontological level (McElreath, 

2016); with no intention to get tangled in the epistemological roots or the philosophical 

debates of subjectivity versus objectivity, we simply divert the issue to the following 
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suggestion (Gelman and Hennig, 2017): replacing the term “subjectivity” with “multiple i 

perspectives and context dependence,” and, in lieu of “objectivity,” focusing on 

transparency, consensus, impartiality, and correspondence to observable reality. Therefore, 

our focus here is the pragmatic aspect of Bayesian modeling: with prior distributions, we can 

make inferences for each ROI under BML, which cannot be achieved under LME.

Prior selection in Bayesian modeling is usually well justified. Since noninformative priors 

are adopted for population i effects here, the only impact of prior information incorporated 

into BML comes from two aspects: the distributional assumptions about those entities such 

as subjects and ROIs, and the hyperpriors. However, the rationale for the Gaussian priors of 

entities is not more far-fetched than that for the Gaussian assumption of cross-subject 

distribution in the typical GLM adopted in neuroimaging group analysis. As for the 

hyperpiors, weakly informative priors basically play the role of numerical regularization: 

when the amount of data is moderate or large, these conservative priors levy a negligible 

effect on the final inferences; on the other hand, when the data do not contain enough 

information for robust inferences, the weakly i informative priors prevent the distributions 

from becoming unsupportively dispersive. Specifically, for simple models such as Student’s 

t-test and GLM, Bayesian approach renders similar inferences if noninformative priors are 

assumed. On the surface a noninformative prior does not “artificially” inject much 

“subjective” information into the model, and should be t preferred. In other words, it might 

be considered a desirable property from the NHST viewpoint, since noninformative priors 

are independent of the data. Because of this “objectivity” property, one may insist that 

noninformative priors should; be used all the time. Counterintuitively, a noninformative prior 

may become so informative that it could cause unbounded i damage (Gelman et al., 2017). If 

we analyze the r ROIs individually as in the r GLMs (14), the point estimate for each effect 

θj is considered stationary, and we would have to correct for multiple testing due to the fact 

that r separate models are fitted independently. Bonferroni correction would likely be too 

harsh, which is the major reason that ROI-based analysis is rarely adopted in neuroimaging 

except for effect verification or graphic visualization. On the other hand, the conventional 

approach with the r GLMs (14) is equivalent to the BML (17) by a priori assuming an 

improper flat prior for θj with the cross-ROI variability τ2 = ∞; that is, each effect θj can be 

any value with equal likelihood within (−∞,∞). In the case of BOLD response, it is not 

necessarily considered objective to adopt a noninformative priori such as uniform 

distribution when intentionally ignoring the prior knowledge. In fact, we do have the prior 

knowledge that the typical effect from a i 3T scanner has the same scale and lies within, for 

example, (‒4,4) in percent signal change; this commonality can be utilized to calibrate or 

regularize the noise, extreme values, or outliers due to pure chance or unaccounted-for 

confounding i effects (Gelman et al., 2012), which is the rationale for our prior Gaussian 

assumption for both subjects and ROIs. A flat noninformative prior or no investigator choice 

does not necessarily mean objectivity. Even for an effect for a covariate (e.g., the associate 

between behavior and BOLD response), it would be far-fetched to assume that τ2 has the 

equal chance between, for example, 0 and 1010. Another example of information waste 

under NHST is the following. Negative or zero variance can occur in an ANOVA model 

while zero variance may show up in LME. Such occurrences are usually due to the full 

reliance on the data or a parameter boundary, and such direct estimates are barely 
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meaningful: an estimate of cross-subject variability λ2 =0 in (17) indicates that all subjects 

have absolutely identical effects. However, a Bayesian inference is a tug of war between data 

and priors, and therefore negative or zero variance inferences would not occur because those 

scenarios from the data are regularized by the priors, as previously shown in ICC 

computations that are regularized by a Gamma prior for the variance components (Chen et 

al., 2017c).

In typical neuroimaging data with reasonable number of subjects and moderate number of 

ROIs, the weakly informative priors for scaling parameters usually play a nudging role. In 

general, when there is enough data, weakly informative priors are usually drowned out by 

the information from the data; on the other hand, when data are meager (e.g., with small or 

moderate sample size), such priors can play the role of regularization (Gelman et al., 2017) 

so that smoother and more stable inferences could be achieved than would be obtained with 

a flat prior. In addition, a weakly informative prior for BML allows us to make reasonable 

inferences at the region level while model quality can be examined through tools such as 

posterior predictive check and LOO cross-validation. Therefore, if we do not want to waste 

such prior knowledge for an effect bounded within a range in the brain, the commonality 

shared by all the brain regions can be incorporated into the model through a weakly 

informative prior and the calibration of partial pooling among the ROIs, thus eliding the step 

of correcting for multiple testing under NHST.

To summarize, we recommend that three types of priors be adopted for ROI-based BML: 1) 

Gaussian distribution for the response variable (or input data) and effects at the entity level 

such as ROIs and subjects, 2) uninformative prior t for the effects (e.g., intercept and slopes) 

at the population level, and 3) weekly informative priors for scaling parameters (e.g., 

variances). Such a prior setting should be able to handle the typical BML modeling in 

neuroimaging unless the amount of data is overly meager (e.g., a few ROIs or subjects only). 

With the typical neuroimaging dataset, our prior recommendation would nave negligible 

impact on the population effect estimates as shown in the comparisons between LME and 

BML (Table 4(a)). However, it is worth noting that the effects of interest here are not those 

at the population level under the LME and BML framework, but rather those effects at the 

entity (i.e. ROI) level in the current context. We note that the experiment dataset employed 

here to demonstrate BML applications happens to have more than 100 subjects. However, 

such a large sample size is not a prerequisite for BML. A larger sample would lead to more 

robust inferences (as it would in other approaches); however, BML does not require more 

subjects than the rule of thumb with typical neuroimaging group model such as GLM in 

terms of sample size.

Progress in Bayesian computations is paving the way for more advanced modeling 

opportunities. Bayesian algorithms have traditionally been burdened with meticulous and 

time consuming computations, making their adoption for wide applications difficult and 

impractical for multilevel models even with a dataset of small or moderate size. However, 

the situation has been substantially ameliorated by the availability of multiple software tools 

such as Stan, and the rapid development in Stan over the past few years has promoted the 

wide adoption of Bayesian modeling. In particular, Stan adopts static HMC Samplers and its 

extension, NUTS, and it renders less autocorrelated and more effective draws for the 
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posterior distributions, achieving quicker convergence than the traditional Bayesian 

algorithms such as Metropolis-Hastings, Gibbs sampling, and so on. With faster 

convergence and high efficiency, it is now feasible to perform full Bayesian inferences for 

BML with datasets of moderate size.

Advantages of ROI-based BML

Bayesian modeling has long been adopted in neuroimaging at the voxel or node level (e.g., 

Woolrich et al., 2004; Penny et al., 2005; Westfall et al., 2017; Eklund et al., 2017; Mejia et 

al., 2017); nevertheless, correction for FWE would still have to be imposed as part of the 

model or as an extra step. In the current context, we formulate the data generation 

mechanism for each dataset through a progressive triplet of models on a set of ROIs: GLM 

→ LME → BML. The strength of multilevel modeling lies in its capability of stratifying 

the data in a hierarchical or multilevel structure so that complex dependency or correlation 

structures can be properly accounted for coherently within a single model. Specifically 

applicable in neuroimaging is a crossed or factorial layout between the list of ROIs and 

subjects as shown in the LME equation (4) and its Bayesian counterpart (5). Our adoption of 

BML, as illustrated with the demonstrative data analysis, indicates that BML holds some 

promise for neuroimaging and offers the following advantages over traditional approaches:

1. As BML and LME usually share a corresponding modeling structure, BML can 

handle data structures involved in the conventional models that are subsumed 

under LME such as Student’s t-tests, ANOVA, regression, ANCOVA and GLM. 

For example, missing data can be handled as long as the missingness can be 

considered missing at random. Furthermore, BML is superior to LME in dealing 

with complicated data structures. For example, the number of parameters under 

LME with a sophisticated variance-variance structure could be high, leading to 

overfitting and convergence failure with the maximum likelihood algorithm; in 

contrast, the numerical regularization under BML may help overcome the 

overfitting and convergence issues.

2. Compared to the conventional GLM, BML achieves a better model performance 

and higher predictive accuracy through partial pooling, a trade-off between 

underfitting with complete pooling and overfitting with no pooling. Specifically, 

BML is assessed with data through adaptive regularization with nudges from the 

prior information: it learns from the data and borrows information across ROIs to 

improve the quality of individual estimates and posterior distributions with the 

assumption of similarity among the regions.

3. Instead of separately correcting for multiple testing, BML incorporates multiple 

testing as part of the model by assigning a prior distribution among the ROIs 

(i.e., treating ROIs as random effects under the LME paradigm). In doing so, 

multiple testing is handled under the scaffold of the multilevel data structure by 

conservatively shrinking the original effect toward the center; that is, instead of 

leveraging cluster size or signal strength, BML leverages the commonality 

among ROIs.
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4. BML may achieve higher spatial specificity through efficient modeling. A 

statistically identified cluster through a whole brain analysis is not necessarily 

anatomically or functionally meaningful. In other words, a statistically identified 

cluster is not always aligned well with a brain region for diverse reasons such as 

“bleeding” effect due to contiguity among regions, and suboptimal alignment to 

the template space, as well as spatial blurring. In fact, such a cluster may overlap 

multiple brain regions or subregions; for example, with a large sample size (e.g., 

more 200 subjects), one may have difficulty in differentiating statistically 

identified regions within a large portion of the brain that all pass even a very 

stringent threshold (e.g., voxel-wise significance level of 10−10). In contrast, as 

long as a region can be a priori defined, its statistical inference under BML is 

assessed by its signal strength relative to its peers, not by its spatial extent, 

providing an alternative to the whole brain analysis with more accurate spatial 

specificity.

5. BML offers a flexible approach to dealing with double sidedness at the ROI 

level. When prior information about the directionality of an effect is available on 

some, but not all, regions (e.g., from previous studies in the literature), one may 

face the issue of performing two one-tailed t-tests at the same time in a blindfold 

fashion due to the limitation of the massively univariate approach. The ROI-

based approach disentangles the complexity since the posterior inference for 

each ROI can be made separately.

6. Model validation is a crucial facet of Bayesian framework. It is sometimes stated 

a model- or assumption-free approach is preferable to parametric methods, for 

example, with the argument that the p-value from permutation testing can be 

considered “exact.” However, it should be noted that “exactness” in this sense is 

a technical definition, requiring strict exchangeability and based on the 

assumption that the only possible values obtainable in an experiment were 

obtained. That is, the p-value’s “exactness” remains conditional on the current 

data. This emphasis on strict exactness under the NHST is questionable since the 

p-value itself is a random variable and the data are usually quite noisy; for 

instance, a repeated experiment under the same conditions would lead to a 

different “exact” p-value. Furthermore, uncertainty or precision information is 

usually not provided for the clusters identified from permutation testing (as well 

as other cluster- based approaches), and no model checking capability is offered 

either even though a linear model is indeed defined under the typical framework 

(including permutation testing) in neuroimaging.

On the other hand, just as the Ptolemaic model served as a starting point for the supersession 

with the Heliocentric model of Copernicus, Galileo and Kepler, so does a parametric 

framework, regardless of its limitations, set up a scaffold that allows more modeling 

capabilities and targeted inferences. Those capabilities and inferences can be validated, 

criticized and incrementally improved. It may be trite to cite the famous quote of “all models 

are wrong” by George E. P. Box. However, the reality in neuroimaging is that model quality 

checks have historically been substantially lacking. When prompted, one may acknowledge 

the potential problems and pitfalls of a model, but it is much more common to see statistical 
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analyses conducted as mechanical operations on assembly lines; when discussing and 

reporting results from the model, the investigator tends to treat the model as if it were always 

true and then discusses statistical inferences without realizing the implications or 

ramifications of a model that fits poorly or even conflicts with data. Building, comparing, 

tuning and improving models is a daunting task with whole brain data due to the high 

computational cost and visualization inconvenience. In contrast, model quality checking is 

an intrinsic part of Bayesian modeling process, such as providing quantile intervals for each 

effect estimate. The performance of each model and the room for improvement can be 

directly examined through graphical display as shown in Fig. 3.

7. A full results reporting is possible for all ROIs under BML. The conventional 

NHST focuses on the point estimate of an effect supported with statistical 

evidence in the form of a p-value. In the same vein, typically the results from the 

whole brain analysis are displayed with sharp-thresholded maps or tables that 

only show the surviving clusters with statistic- or p-values. In contrast, as the 

focus under the Bayesian framework is on the predictive distribution, not the 

point estimate, of an effect, the totality of BML results can be summarized in a 

table as shown in Figures 1 and 2, listing the predictive intervals in various 

quantiles (e.g., 50%, 75%, and 95%), a luxury that whole brain analysis cannot 

provide. Such totality pits against the backdrop in which the effect estimates and 

their uncertainty are usually not reported in the whole brain analysis (Chen et al., 

2017b). In contrast, BML modeling at the ROI level directly allows the 

investigator to present the effect estimate. More importantly, BML substantiates 

the reporting advantage not only because of modeling at the ROI level, but also 

due to the fact that the uncertainty associated with each effect estimate can 

demonstrated in a much richer fashion (e.g., explicit revealing the spread or 

skewness of the posterior distribution) through the posterior density distribution 

(Fig. 2) than the conventional confidence interval (1) that is flat and inconvenient 

to interpret. Furthermore, the full results reporting from BML would 

substantially improve future meta analysis, unlike the current meta analysis that 

is largely based on the anatomical coordinates of one voxel without taking into 

consideration the effect size information across studies.

8. To some extent, the ROI-based BML approach can alleviate the arbitrariness 

involved in the thresholding with the current FPR correction practices. Even 

though BML allows the investigator to present the whole results for all regions, 

for example, in a table format, we do recognize that the investigator may prefer 

to focus the discussion on some regions with strong posterior evidence. In 

general, with all effects reported in totality, regardless of their statistical 

evidence, the decision of choosing which effects to discuss in a paper should be 

based on cost, benefit, and probabilities of all results (Gelman et al., 2014). 

Specifically for neuroimaging data analysis, the decision still does not have to be 

solely from the posterior distribution; instead, we suggest that the decision be 

hinged on the statistical evidence from the current data, combined with prior 

information from previous studies. For example, one may still choose the 95% 

quantile interval as an equivalent benchmark to the conventional p-value of 0.05 

Chen et al. Page 27

Neuroinformatics. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



when reporting the BML results. However, those effects with, say, 90% quantile 

intervals excluding 0 can still be discussed with a careful and transparent 

description, which can be used as a reference for future studies to validate or 

refute; or, such effects can be reported if they have been shown in previous 

studies. Moreover, rather than a cherry-picking approach on reporting and 

discussing statistically significant clusters in whole brain analysis8 showing 

neither the effect magnitude nor the corresponding uncertainty, we recommend a 

principled approach in results reporting in which the ROI-based results be 

reported in totality with a summary as shown in Figures 1 and 2 and be discussed 

through transparency and soft, instead of sharp, thresholding. We believe that 

such a soft thresholding strategy is more healthy and wastes less information for 

a study that goes through a strenuous pipeline of experimental design, data 

collection, and analysis.

Limitations of ROI-based BML and future directions

ROIs can be specified through several ways depending on the specific study or information 

available regarding the relevant regions. For example, one can find potential regions 

involved in a task or condition including resting state from the literature. Such regions are 

typically reported as the coordinates of a “peak” voxel (usually highest statistic value within 

a cluster), from which each region could be defined by centering a ball with a radius of, e.g., 

6 mm in the brain volume (or by projecting an area on the surface). Regions can also be 

located through (typically coordinate-based) meta analysis with databases such as 

NeuroSynth (http://www.neurosynth.org) and BrainMap (http://www.brainmap.org), with 

tools such as brain_matrix (https://github.com/fredcallaway/brain_matrix), GingerALE 

(http://brainmap.org/ale), Sleuth (http://brainmap.org/sleuth), and Scribe (http://

www.brainmap.org/scribe) that are associated with the database BrainMap. Anatomical 

atlases (e.g., http://surfer.nmr.mgh.harvard.edu, http://www.med.harvard.edu/aanlib) and 

functional parcellations (e.g., Schaefer et al., 2017) are another source of region definition. 

As a different strategy, by recruiting enough subjects, one could use half of the subjects to 

define ROIs, and the other half to perform ROI-based analysis; similarly, one could scan the 

same set of subjects longer, use the first portion of the data to define ROIs, and the rest to 

perform ROI-based analysis.

One concern is that the exchangeability requirement of BML assumes that no differential 

information is available across the ROIs in the model. Exchangeability captures symmetry 

among the ROIs in a sense that does not require independence. That is, an independent and 

identically distributed set of ROIs is exchangeable, but not vice versa. However, every 

exchangeable set of ROIs is identically distributed. Under some circumstances, ROIs can be 

expected to share some information and not fully independent, especially when they are 

anatomically contiguous or more functionally related than the other ROIs (e.g., homologous 

regions in opposite hemisphere). However, the exchangeability is an epistemological, neither 

physical nor ontological, assumption that renders a convenient approximation of a prior 

8A popular cluster reporting method among the neuroimaging software packages is to simply present the investigator only with the 
icebergs above the water, the surviving clusters, reinforcing the illusionary either-or dichotomy under NHST.
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distribution by a mixture of i.i.d. distributions (de Finetti’s theorem). The presence of 

temporal correlation in time series regression may cause the underestimation of variances 

because the conventional statistics heavily relies on the concept of degrees of freedom. In 

contrast, Bayesian inferences build on posterior distributions without invoking the degrees of 

freedom, and the violation of exchangeability usually leads to negligible effect on the final 

shape of posterior distributions except for the precise sequence in which the posterior draws 

occur (McElreath, 2016). Furthermore, the performance of BML can be effectively 

examined through posterior predictive checks and cross validations, as illustrated in Fig. 3. 

Further improvement may be possible through future modeling work on exploring the 

possibility of capturing the finer structures among the ROIs.

It might be tempting to apply the BML strategy to the whole brain voxel-wise analysis (e.g., 

shrinking the effects among voxels). However, such an extension faces serious issues, such 

as daunting computational cost and the loss of spatial specificity. Nevertheless, BML with 

ROIs defined from a whole brain atlas could be a viable solution. Other limitations of the 

ROI-based BML are as follows.

1. Just as the FWE correction on the massively univariate modeling results is 

sensitive to the size of the full domain in which it is levied (whole brain, gray 

matter, or a user-defined volume), so the results from BML will depend to some 

extent on the number of ROIs (or which) ones included. For a specific ROI j, 
changing the composition among the rest of ROIs (e.g., adding an extra ROI or 

replacing one ROI with another) may result in a different prior distribution (e.g, 

θ j ∼ N μ, τ2  in BML (5)) and a different posterior distribution for θj. However, it 

merits noting that the regions should not be arbitrarily chosen but rather selected 

from the current knowledge and relevancy of the involving effect under 

investigation.

2. ROI data extraction involves averaging among voxels within the region. 

Averaging, as a spatial smoothing or low-pass filtering process, condenses, 

reduces or dilutes the information among the voxels (e.g., 30) within the region 

to one number, and loses any finer spatial structure within the ROI. In addition, 

the variability of extracted values across subjects and across ROIs could be 

different from the variability at the voxel level.

3. ROI-based analysis is conditional on the availability and quality of the ROI 

definition. One challenge facing ROI definition is the inconsistency in the 

literature due to inaccuracies across different coordinate/template systems and 

publication bias. In addition, some extent of arbitrariness is embedded in ROI 

definition; for example, a uniform adoption of a fixed radius may not work well 

due to the heterogeneity of brain region sizes. When not all regions or subregions 

currently can be accurately defined, or when no prior information is available to 

choose a region in the first place, the ROI-based approach may miss any 

potential regions if they are not included in the model.

Despite these limitations, we believe that BML holds its unique promising potentials and 

advantages over the conventional approaches, and we hope that it will serve as a catalyst for 
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a wider modeling landscape in neuroimaing. As shown here, the performance of BML can 

be directly assessed and compared to the conventional approaches through posterior 

predictive checks and cross validations. Admittedly, as all models are idealized statistical 

representations, our BML work presented here is only an incremental step in neuroimaging; 

besides multiplicity, NIHST pitfalls and inefficient modeling, there remain daunting 

challenges such as linearity assumption (e.g., superposition among overlapping 

hemodynamic responses), temporal correlation (Olszowy et al., 2017) and the inaccuracy of 

presumed hemodynamic response modeling in FMRI data analysis.

Conclusion

The prevalent adoption of dichotomous decision making under NHST runs against the 

continuous nature of most quantities under investigation, including neurological responses, 

which has been demonstrated to be problematic through type S and type M errors when the 

signal-to-noise ratio is low. The conventional correction for FWE in neuroimaging data 

analysis is viewed as a “desirable” standard procedure for whole brain analysis because the 

criterion is a pivotal component of NHST. However, it is physiologically unfeasible to claim 

that there is absolutely no effect in most brain regions; therefore, we argue that setting the 

stage only to fight the straw man of no effect anywhere is not necessarily a powerful nor 

efficient inference strategy. Inference power is further comprimised by FWE correction due 

to the inefficiency involved in the massively univariate modeling approach. As BOLD 

responses in the brain share the same scale and range, the ROI-based BML approach 

proposed here allows the investigator to borrow strength and effectively regularize the 

distribution among the regions. Furthermore, no unnecessary penalization is levied on small 

regions under BML simply because of their anatomical structure, thus BML can 

simultaneously achieve meaningful spatial specificity and detection efficiency. Lastly, BML 

can provide increasing transparency on model building, quality control, and detailed results 

reporting, and offers a promising approach to addressing two multiplicity issues: multiple 

testing and double sidedness.
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Appendix A. Pitfalls of NHST

i. It is a common mistake by investigators and even statistical analysts to 

misinterpret the conditional probability under NHST as the posterior probability 

of the truth of the null hypothesis (or the probability of the null event conditional 

on the current data at hand) even though fundamentally P(data | H0) ≠ P(H0 | 

data).

ii. One may conflate statistical significance with practical significance, and 

subsequently treat the failure to reach statistical significance as the nonexistence 

Chen et al. Page 30

Neuroinformatics. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of any meaningful effect. Even though the absence of evidence is not an evidence 

of absence, it is common to read discussions in scientific literature wherein the 

authors implicitly (or even explicitly) treat statistically non-significant effects as 

if they were zero.

iii. Statistic- or p-values cannot easily be compared: the difference between a 

statistically significant effect and another effect that fails to pass the significance 

level does not necessarily itself reach statistical significance.

iv. How should the investigator handle the demarcation, due to sharp thresholding, 

between one effect with p = 0.05 (or a surviving cluster cutoff of 54 voxels) and 

another with p = 0.051 (or a cluster size of 53 voxels)9?

v. The focus on statistic- or p-value seems to, in practice, lead to the preponderance 

of reporting only statistical, instead of effect, maps in neuroimaging, losing an 

effective safeguard that could have filtered out potentially spurious results (Chen 

et al., 2017b).

vi. One may mistakenly gain more confidence in a statistically significant result 

(e.g., high statistic value) in the context of data with relatively heavy noise or 

with a small sample size (e.g., leading to statement such as “despite the small 

sample size” or “despite the limited statistical power”). In fact, using statistical 

significance as a screener can lead researchers to make a wrong assessment about 

the sign of an effect or drastically overestimate the magnitude of an effect.

vii. While the conceptual classifications of false positives and false negatives make 

sense in a system of discrete nature (e.g., juror decision on H0: the suspect is 

innocent), what are the consequences when we adopt a mechanical dichotomous 

approach to assessing a quantity of continuous, instead of discrete, nature?

viii. It is usually under-appreciated that the p-value, as a function of data, is a random 

variable, and thus itself has a sampling distribution. In other words, p-values 

from experiments with identical designs can differ substantially, and statistically 

significant results may not necessarily be replicated (Lazzeroni et al., 2016).

Appendix B. Type S and type M errors

We discuss two types of error that are not often discussed in neuroimaging: type S and type 

M. These two types of rror cannot be directly captured by the FPR concept and may become 

severe when the effect is small relative to the noise, which is usually the situation in BOLD 

neuroimaging data. In the NHST formulation, we formulate a null hypothesis H0 (e.g., the 

effect of an easy task E is identical to a difficult one D), and then commit a type I (or false 

positive) error if wrongly rejecting H0 (e.g., the effect of easy is judged to be statistically 

significantly different from difficult when actually their effects are the same); in contrast, we 

make a type II (or false negative) error when accepting H0 when H0 is in fact false (e.g., the 

effect of easy is assessed to be not statistically significant from difficult even though their 

9The investigator would not be able to even see such borderline clusters since the typical software implementations mechanically 
adopt a dichotomous results presentation.
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effects do differ). These are the dichotomous errors associated with NHST, and the 

counterbalance between these two types of error are the underpinnings of typical 

experimental design as well results reporting.

However, we could think about other ways of framing errors when making a statistical 

assessment (e.g., the easy case elicits a stronger BOLD response at some region than the 

difficult case) conditional on the current data. We are exposed to a risk that our decision is 

contrary to the truth (e.g., the BOLD response to the easy condition is actually lower than to 

the difficult condition). Such a risk is gauged as a type S (for “sign”) error when we 

incorrectly identify the sign of the effect; its values range from 0 (no chance of error) to 1 

(full chance of error). Similarly, we make a type M (for “magnitude”) error when estimating 

the effect as small in magnitude if it is actually large, or when claiming that the effect is 

large in magnitude if it is in fact small (e.g., saying that the easy condition produces a much 
large response than the difficult one when actually the difference is tiny); its values range 

across the positive real numbers: [0, 1) correspond to underestimation of effect magnitude, 1 

describes correct estimation, and (1, ∞+) mean overestimation. The two error types are 

illustrated in Fig. 5 for inferences made under NHST. In the neuroimaging realm, effect 

magnitude is certainly a property of interest, therefore the corresponding type S and type M 

errors would be of research interest.

Geometrically speaking, if the null hypothesis H0 can be conceptualized as the point at zero, 

NHST aims at the real space R excluding zero with a pivot at the point of zero (e.g., D — E 
= 0); in contrast, type S error gauges the relative chance that a result is assessed on the 

wrong side of the distribution between the two half spaces of R (e.g., D — E > 0 or D — E < 

0), and type M error gauges the relative magnitude of differences along segments of R+ (e.g., 

the ratio of measured to actual effect is ≫ 1 or ≪ 1). Thus, we characterize type I and type II 

errors as “point-wise” errors, driven by judging the equality, and describe type S and type M 

errors as “direction-wise,” driven by the focus of inequality or directionality.

One direct application of type M error is that publication bias can lead to type M errors, as 

large effect estimates are more likely to filter through the dichotomous decisions in 

statistical inference and reviewing process. Using the type S and type M error concepts, it 

might be surprising for those who encounter these two error types for the first time to realize 

that, when the data are highly variable or noisy, or when the sample size is small with a 

relatively low power (e.g., 0.06), a statistically significant result at the 0.05 level is quite 

likely to have an incorrect sign - with a type S error rate of 24% or even higher (Gelman and 

Carlin, 2014). In addition, such a statistically significant result would have a type M error 

with its effect estimate much larger (e.g., 9 times higher) than the true value. Put it another 

way, if the real effect is small and sampling variance is large, then a dataset that reaches 

statistical significance must have an exaggerated effect estimate and the sign of the effect 

estimate is likely to be incorrect. Due to the ramifications of type M errors and publication 

filtering, an effect size from the literature could be exaggerated to some extent, seriously 

calling into question the usefulness of power analysis under NHST in determining sample 

size or power, which might explain the dramatic contrast between the common practice of 

power analysis as a requirement for grant applications and the reproducibility crisis across 

various fields. Fundamentally, power analysis inherits the same problem with NHST: a 
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narrow emphasis on statistical significance is placed as a primary focus (Gelman and Carlin, 

2013).

The typical effect magnitude in BOLD FMRI at 3 Tesla is usually small, less than 1% signal 

change in most brain regions except for areas such as motor and primary sensory cortex. 

Such a weak signal can be largely submerged by the overwhelming noise and distortion 

embedded in the FMRI data. The low power for detection of typical FMRI data analyses in 

typical datasets is further compounded by the modeling challenges in accurately capturing 

the effect. For example, even though large number of physiological confounding effects are 

embedded in the data, it is still difficult to properly incorporate the physiological “noises” 

(cardiac and respirary effects) in the model. Moreover, habituation, saturation, or attenuation 

across trials or within each block are usually not considered, and such fluctuations relative to 

the average effect would be treated as noise or fixed- instead of random-effects (Westfall et 

al., 2017). There are also strong indications that a large portion of BOLD activations are 

usually unidentified at the individual subject level due to the lack of power (Gonzalez- 

Castillo et al., 2012). Because of these factors, the variance due to poor modeling 

overwhelms all other sources (e.g., across trials, runs, and sessions) in the total data variance 

(Gonzalez-Castillo et al., 2016); that is, the majority (e.g., 60–80%) of the total variance in 

the data is not properly accounted for in statistical models.

Appendix C. Multiplicity in neuroimaging

In general, we can classify four types of multiplicity issues that commonly occur in 

neuroimaging data analysis.

A) Multiple testing. The first and major multiplicity arises when the same design (or model) 

matrix is applied multiple times to different values of the response or outcome variable, such 

as the effect estimates at the voxels within the brain. As the conventional voxel-wise 

neuroimaging data analysis is performed with a massively univariate approach, there are as 

many models as the number of voxels, which is the source of the major multiplicity issue: 

multiple testing. Those models can be, for instance, Student’s t-tests, AN(C)OVA, univariate 

or multivariate GLM, LME or Bayesian model. Regardless of the specific model, all the 

voxels share the same design matrix, but have different response variable values on the left-

hand side of the equation. With human brain size on the order of 106 mm3, the number of 

voxels may range from 20,000 to 150,000 depending on the voxel dimensions. Each extra 

voxel adds an extra model and leads to incrementally mounting odds of pure chance or 

“statistically significant outcomes,” presenting the challenge to account for the occurrence of 

mounting family-wise error (FWE), while effectively holding the overall false positive rate 

(FPR) at a nominal level (e.g., 0.05). In the same vein, surface-based analysis is performed 

with 30,000 to 50,000 nodes (Saad et al., 2004), sharing a similar multiple testing issue with 

its volume-based counterpart. Sometimes the investigator performs analyses at smaller 

number of regions of interest (ROIs), perhaps of order 100, but even here adjustment is still 

required for the multiple testing issue (though it is often not made).

B) Double sidedness. Another occurrence of multiplicity is the widespread adoption of two 

separate one-sided (or one-tailed) tests in neuroimaging. For instance, the comparison 
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between the two conditions of “easy” and “difficult” are usually analyzed twice for the 

whole brain: one showing whether the easy effect is higher than difficult, and the other for 

the possibility of the difficult effect being higher than easy. One-sided testing for one 

direction would be justified if prior knowledge is available regarding the sign of the test for a 

particular brain region. When no prior information is available for all regions in the brain, 

one cannot simply finesse two separate one-sided tests in place of one two-sided test, and a 

double sidedness practice warrants a Bonferroni correction because the two tails are 

independent with respect to each other (and each one-sided test is more liberal than a two-

sided test at the same significance level). However, simultaneously testing both tails in 

tandem for whole brain analysis without correction is widely used without clear justification, 

and this forms a source of multiplicity issue that needs proper accounting (Chen et al., 

2018).

C) Multiple comparisons. It rarely occurs that only one statistical test is carried out in a 

specific neuroimaging study, such as a single one-sample t-test. Therefore, a third source of 

multiplicity is directly related to the popular term, multiple comparisons, which occur when 

multiple tests are conducted under one model. For example, an investigator that designs an 

emotion experiment with three conditions (easy, difficult, and moderate) may perform 

several separate tests: comparing each of the three conditions to baseline, making three 

pairwise comparisons, or testing a linear combination of the three conditions (such as the 

average of easy and difficult versus moderate). However, neuroimaging publications seldom 

consider corrections for such separate tests.

D) Multiple paths. The fourth multiplicity issue to affect outcome interpretation arises from 

the number of potential preprocessing, data dredging and analytical pipelines (Carp, 2012). 

For instance, all common steps have a choice of procedures: outlier handling (despiking, 

censoring), slice timing correction (yes/no, various interpolations), head motion correction 

(different interpolations), different alignment methods from EPI to anatomical data plus 

upsampling (1 to 4 mm), different alignment methods to different standard spaces (Talairach 

and MNI variants), spatial smoothing (3 to 10 mm), data scaling (voxel-wise, global or 

grand mean), confounding effects (slow drift modeling with polynomials, high pass filtering, 

head motion parameters), hemodynamic response modeling (different presumed functions 

and multiple basis functions), serial correlation modeling (whole brain, tissue-based, voxel-

wise AR or ARMA), and population modeling (univariate or multivariate GLM, treating sex 

as a covariate of no interest (thus no interactions with other variables) or as a typical factor 

(plus potential interactions with other variables)). Each choice represents a “branching 

point” that could have a quantitative change to the final effect estimate and inference. 

Conservatively assuming three options at each step here would yield totally 310 = 59,049 

possible paths, commonly referred to as researcher degrees of freedom (Simmons et al., 

2011). The impact of the choice at each individual step for this abbreviated list might be 

negligible, moderate, or substantial. For example, different serial correlation models may 

lead to substantially different effect estimate reliability (Olszowy et al., 2017); the estimate 

for spatial correlation of the noise could be sensitive to the voxel size to which the original 

data were upsampled (Mueller et al., 2017; Cox and Taylor, 2017), which may lead to 

different cluster thresholds and poor control to the intended FPR in correcting for 

multiplicity. Therefore, the cumulative effect across all these multilevel branching points 
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could be a large divergence between any two paths for the final results. A multiverse 

analysis (Steegen et al., 2016) has been suggested for such situations of having a “garden of 

forking paths” (Gelman and Loken, 2013), but this seems highly impractical for 

neuroimaging data. Even when one specific analytical path is chosen by the investigator, it 

remains possible to invoke potential or implicit multiplicity in the sense that the details of 

the analytical steps such as data sanitation are conditional on the data (Gelman and Loken, 

2013). The final interpretation of significance typically ignores the number of choices or the 

potential branchings that may affect the final outcome, even though it would be more 

preferable to have the statistical significance independent of these preprocessing steps.

Appendix D. Bayesian modeling for one-way random-effects ANOVA

Here we discuss a classical framework, a hierarchical or multilevel model for a one-way 

random-effects ANOVA, and use it as a building block to expand to a Bayesian framework 

for neuroimaging group analysis. In evaluating this model, the controllability of inference 

errors will be focused on type S errors instead of the traditional FPR. Suppose that there are 

r measured entities (e.g., ROIs), with entity j measuring the effect θj from nj independent 

Gaussian-distributed data points yij, each of which represents a sample (e.g., trial), i = 1, 2, 

…, nj. The conventional statistical approach formulates r separate models,

yi j = θ j + ϵi j, i = 1, 2, …, n j, (18)

where ϵij is the residual for the jth entity and is assumed to be Gaussian 𝒩 0, σ2 , j = 1, 2, 

…,r. Depending on whether the sampling variance σ2 is known or not, each effect can be 

assessed through its sample mean y ⋅ j = 1
n j

∑i = 1
n j yi j relative to the corresponding variance 

V j
0 = σ2

n j
, resulting in a Z- or t-test.

By combining the data from the r entities and further decomposing the effect θj into an 

overall effect b0 across the r entities and the deviation ξj of the jth entity from the overall 

effect (i.e., θj = b0+ξj, j = 1, 2, …, r), we have a conventional one-way random-effects 

ANOVA,

yi j = b0 + ξ j + ϵi j, i = 1, 2, …, n j, j = 1, 2, …, r, (19)

where b0 is conceptualized as a fixed-effects parameter, ξj codes the random fluctuation of 

the jth entity from the overall mean b0, with the assumption of ξ j ∼ 𝒩 0, τ2 , and the residual 

ϵij follows a Gaussian distribution 𝒩 0, σ2 . The classical one-way random-effects ANOVA 

model (19) is typically formulated to examine the null hypothesis,

H0:τ = 0, (20)

with an F-statistic, which is constructed as the ratio of the between mean sums of squares 

and the within mean sums of squares. An application of this ANOVA model (19) to 
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neuroimaging is to compute the intraclass correlation ICC(1,1) as τ2

τ2 + σ2  when the 

measuring entities are exchangeable (e.g., families with identical twins; Chen et al., 2017c).

Whenever multiple values (e.g., two effect estimates from two scanning sessions) from each 

measuring unit (e.g., subject or family) are correlated (e.g., the levels of a within-subject or 

repeated-measures factor), the data can be formulated using a linear mixed-effects (LME) 

model, sometimes referred to as a multilevel or hierarchical model. One natural ANOVA 

extension is simply to treat the model conceptually as LME, without the need of 

reformulating the model equation (19). However, LME can only provide point estimates for 

the overall effect b0, cross-region variance τ2 and the data variance σ2; that is, the LME (19) 

cannot directly provide any information regarding the individual ξj or θj values because of 

over-fitting due to the fact that the number of data points is less than the number of 

parameters that need to be estimated.

Our interest here is neither to assess the variability τ2 nor to calculate ICC, but instead to 

make statistical inferences about the individual effects θj. Nevertheless, the conventional 

NHST (20) may shed some light on potential strategies (Gelman et al., 2014) for θj. If the 

deviations ξj are relatively small compared to the overall mean b0, then the corresponding F-

statistic value will be small as well, leading to the decision of not rejecting the null 

hypothesis (20) at a reasonable, predetermined significance level (e.g., 0.05); in that case, we 

can estimate the equal individual effects θj using the overall weighted mean y.. through full 

pooling with all the data,

θ1 = θ2 = … = θ r = y.. =
∑ j = 1

r 1
σ j

2 y ⋅ j

∑ j = 1
r 1

σ j
2

, (21)

where y ⋅ j = 1
n j

∑i = 1
n j yi j and σ j

2 = σ2
n j

 are the sampling mean and variance for the jth 

measuring entity, and the subscript dot (·) notation indicates the (weighted) mean across the 

corresponding index(es). On the other hand, if the deviations ξj are relatively large, so is the 

associated F-statistic value, leading to the decision of rejecting the null hypothesis (20); 

similarly, we can reasonably estimate θj with no pooling across the r entities; that is, each θj 

is estimated using the jth measuring entity’s data separately,

θ j = y ⋅ j = 1
n j

∑
i = 1

n j
yi j, j = 1, 2, …, r . (22)

However, in estimating θj we do not have to take a dichotomous approach of choosing, 

based on a preset significance level, between these two extreme choices, the overall 

weighted mean y.. in (21) through full pooling and the separate means y ⋅ j in (21) with no 

pooling; instead, we could make the assumption that a reasonable estimate to θj lies 
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somewhere along the continuum between y.. and y ⋅ j, with its exact location derived from the 

data instead of by imposing an arbitrary threshold. This thinking brings us to the Bayesian 

methodology.

To simplify the situation, we first assume a known sampling variance σ2 for the ith data 

point (e.g., trial) for the jth entity; or, in Bayesian-style formulation, we build a BML about 

the distribution of yij conditional on θj,

yi j θ j ∼ 𝒩 θ j, σ2 , i = 1, 2, …, n j, j = 1, 2, …, r . (23)

With a prior distribution 𝒩 b0, τ2  for θj and a noninformative uniform hyperprior for b0 

given τ (i.e., b0|τ ~ 1), the conditional posterior distributions for θj can be derived (Gelman 

et al., 2014) as,

θ j |b0, τ, y ∼ 𝒩 θ j, V j , where θ j =

1
σ j

2 y ⋅ j + 1
τ2b0

1
σ j

2 + 1
τ2

, V j = 1
1

σ j
2 + 1

τ2
, σ j

2 = σ2

n j
, j

= 1, 2, .., r .

(24)

The analytical solution (24) indicates that 1
V j

= 1
σ j

2 + 1
τ2 , manifesting an intuitive fact that the 

posterior precision is the cumulative effect of the data precision and the prior precision; that 

is, the posterior precision is improved by the amount 1
τ2  relative to the data precision 1

σ j
2 . 

Moreover, the expression for the posterior mode of θ j in (24) shows that the estimating 

choice in the continuum can be expressed as a precision-weighted average between the 

individual sample means y ⋅ j and the overall mean b0:

θ j =

1
σ j

2 y ⋅ j + 1
τ2b0

1
σ j

2 + 1
τ2

= w jy ⋅ j + 1 − w j b0 = b0 + w j y ⋅ j − b0 = y ⋅ j

− 1 − w j y ⋅ j − b0 , j = 1, 2, .., r,

(25)

where the weights w j =
V j

σ j
2 . The precision weighting in (25) makes intuitive sense in terms 

of the previously described limiting cases:
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i. The full pooling (21) corresponds to wj =0 or τ2 =0, which means that the θj are 

assumed to be the same or fixed at a common value. The approach would lead to 

underfitting because the effect is assumed to be invariance across ROIs.

ii. The no pooling (22) corresponds to wj = 1 or τ2 = ∞, indicating that the r effects 

θj are uniformly distributed within (−∞,∞); that is, it corresponds to a 

noninformative uniform prior on θj. In contrast to full pooling, no pooling tends 

to overfit the data as the information at one ROI is not utilized to shed light on 

any other ROIs.

iii. The partial pooling (24) or (25) reflects the fact that the r effects θj are a priori 

assumed to follow an independent and identically distribution, the prior 𝒩 b0, τ2 . 

Under the Bayesian framework, we make statistical inferences about the r enects 

θj with a posterior uistrioution (24) that liiciuues the conventional uicnotomous 

decisions between run pooling (21) and no pooling (22) as two special and 

extreme cases. Moreover, as expressed in (25), the Bayesian estimate θ j can be 

conceptualized as the precision-weighted average between the individual 

estimate y ⋅ j and the overall (or prior) mean b0, the adjustment of θj from the 

overall mean b0 toward the observed mean y ⋅ j, or conversely, the observed mean 

y ⋅ j being shrunk toward the overall mean b0. As a middle ground between full 

pooling and no pooling, partial pooling usually provides a better fit to the data 

since the information is effectively pooled and shared across ROIs.

An important concept for a Bayesian model is exchangeability. Specifically for the BML 

(23), the effects θj are exchangeable if their joint distribution p(θj, θj, …, θr) is immutable or 

invariant to any random permutation among their indices or orders (e.g., p(θ1, θ2, …, θr), is 

a symmetric function). Using the ROIs as an example, exchangeability means that, without 

any a priori knowledge about their effects, we can randomly shuffle or relabel them without 

reducing our knowledge about their effects. In other words, complete ignorance equals 

exchangeability: before poring over the data, there is no way for us to distinguish the regions 

from each other. When the exchangeability assumption can be assumed for θj, their joint 

distribution can be expressed as a mixture of independent and identical distributions 

(Gelman et al., 2014), which is essential in the derivation of the posterior distribution (24) 

from the prior distribution 𝒩 b0, τ2  for θj.

To complete the Bayesian inferences for the model (23), we proceed to obtain (i) p(b0, τ|y), 

the marginal posterior distribution of the hyperparameters (b0, τ), (ii) p(b0|τ, y), the posterior 

distribution of b0 given τ, and (iii) p(τ|y), the posterior distribution of τ with a prior for τ, 

for example, a noninformative uniform distribution p(τ) ~ 1. In practice, the numerical 

solutions are achieved in a backward order, through Monte Carlo simulations of τ to get p(τ|

y), simulations of b0 to get p(b0|τ, y), and, lastly, simulations of θj to get p(θj|b0, τ, y) in 

(24).
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Assessing type S error under BML

In addition to the advantage of information merging across the r entities between the limits 

of complete and no pooling, a natural question remains: how does BML perform in terms of 

the conventional type I error as well as type S and type M errors? With the “standard” 

analysis of r separate models in (18), each effect θj is assessed against the sampling variance 

V j
0 = σ j

2. In contrast, under the BML (23), the posterior variance, as shown in (24), is 

V j = 1
1

σ j
2 + 1

τ2
, σ j

2 = σ2
n j

. As the ratio of the two variances 
V j

0

V j
= τ2

τ2 + σ j
2  is always less than 1 

(except for the limiting cases of σ2 ⟶ 0 or τ2 ⟶∞), BML generally assigns a larger 

uncertainty than the conventional approach with no pooling. That is, the inference for each 

effect θj based on the unified model (23) is more conservative than when the effect is 

assessed individually through the model (18). Instead of tightening the overall FPR through 

some kind of correction for multiplicity among the r separate models, BML addresses the 

multiplicity issue through precision adjustment or partial pooling under one model with a 

shrinking or pooling strength of 
V j

0

V j
= 1

1 + σ j
2/τ2 .

Simulations (Gelman and Tuerlinckx, 2000) indicate that, when making inference based on 

the 95% quantile interval of the posterior distribution for a single effect θj (j is fixed, e.g., j = 
1), the type S error rate for the Bayesian model (23) is less than 0.025 under all 

circumstances. In contrast, the conventional model (18) would have a substantial type S error 

rate especially when the sampling variance is large relative to the cross-entities variance 

(e.g., σ j
2/τ2 > 2); specifically, type S error reaches 10% when σ j

2/τ2 = 2, and may go up to 

50% if σ j
2 much larger than τ2. When multiple comparisons are performed, a similar patterns 

remains; that is, the type S error rate for the Bayesian model is in general below 2.5%, and is 

lower than the conventional model with rigorous correction (e.g., Tukey’s honestly 

significant difference test, wholly significant differences) for multiplicity when σ/τ > 1. The 

controllability of BML on type S errors is parallel to the usual focus on type I errors under 

NHST; however, unlike NHST in which the typical I error rate is delibrately controlled 

through a an FPR threshold, the controllability of type S errors under BML is intrinsically 

embedded in the modeling mechanism without any explicit imposition.

The model (23) is typically seen in Bayesian statistics textbooks as an intuitive introduction 

to BML (e.g., Gelman et al., 2014). With the indices i and j coding the task trials and ROIs, 

respectively, the ANOVA model (19) or its Bayesian counterpart (23) can be utilized to 

make inferences on an ensemble of ROIs at the individual subject level. The conventional 

analysis would have to deal with the multiplicity issue because of separate inferences at each 

ROI (i.e., entity). In contrast, there is only one integrated model (23) that leverages the 

information among the r entities, and the resulting partial pooling effectively dissolves the 

multiple testing concern. However, the modeling framework can only be applied for single 
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subject analysis, and it is not suitable at the population level; nevertheless, it serves as an 

intuitive tool for us to extend to more sophisticated scenarios.

Appendix E. Derivation of posterior distribution for BML (5)

We start with the BML system (5) with a known sampling variance σ2,

yi j πi, θ j ∼ 𝒩 πi + θ j, σ2 , i = 1, 2, …, n, j = 1, 2, …, r .

Conditional on θj and prior πi ∼ N 0, λ2 , the variance for the sampling mean at the jth ROI, 

y ⋅ j = 1
n ∑i = 1

n yi j =θ j + 1
n ∑i = 1

n πi + 1
n ∑i = 1

n ϵi j, is λ2 + σ2
n ; that is,

y ⋅ j θ j, λ2 ∼ N(θ j,
λ2 + σ2

n ), j = 1, 2, …, r .

With priors πi ∼ N 0, λ2  and θ j ∼ N μ, τ2 , we follow the same derivation as in the likelihood 

(23), and obtain the posterior distribution,

θ j μ, τ, λ, y ∼ 𝒩 θ j, V , where y = yi j , θ j =

n

λ2 + σ2 y ⋅ j + 1
τ2 μ

n

λ2 + σ2 + 1
τ2

, V = 1
n

λ2 + σ2 + 1
τ2

, j = 1, 2, .., r .

When the sampling variance σ2 is unknown, we can solve the LME counterpart in (4),

yi j = μ + πi + ξ j + ϵi j, i = 1, 2, …, n, j = 1, 2, …, r .

We then plug the estimated variances λ2, τ2 and σ2 into the above posterior distribution 

formulas, and obtain the posterior mean and variance through an approximate Bayesian 

approach.
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Figure 1: 
Comparisons of results between the conventional GLM and BML
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Figure 2: 
Posterior density distributions based on 2000 draws from BML. The vertical blue line 

indicates zero ToMI effect, yellow and green tails mark the 90% and 95% quantile intervals, 

respectively, and the ROIs with strong evidence of ToMI effect can be identified as the blue 

line being within the color tails. Compared to the conventional confidence interval that is flat 

and inconvenient to interpret, the posterior density provides much richer information about 

each effect such as spread, shape and skewness.
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Figure 3: 
Model performance comparisons through posterior predictive checks and cross validations 

between conventional univariate GLM (a and c) and BML (b and d). The subfigures a and b 
show the posterior predictive density overlaid with the raw data from the 124 subjects at the 

21 ROIs for GLM and BML, respectively: solid black curve is the raw data at the 21 ROIs 

with linear interpolation while the fat curve in light blue is composed of 100 sub-curves each 

of which corresponds to one draw from the posterior distribution based on the respective 

model. The differences between the two curves indicate how well the respective model fits 

the raw data. BML fitted the data better than GLM at the peak and both tails as well as the 

skewness because pooling the data from both ends toward the center through shrinkage 

clearly validates our adoption of BML. The subfigures c and d contrast GLM and BML 

through cross-validation with leave-one-out log predictive densities through the calibration 

of marginal predictions from 100 draws; the calibration is assessed by comparing probability 

integral transformation (PIT) checks to the standard uniform distribution. The diagonal 
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dished line indicates a perfect calibration: there are some suboptimal calibration for both 

models, but BML is clearly a substantial improvement over GLM. To simulate the posterior 

predictive data for the conventional ROI-based approach (a and c), the Bayesianized version 

of GLM (15) was adopted with a noninformative uniform prior for the population 

parameters.
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Figure 4: 
Power, type S and type M errors estimated from simulations
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Figure 5: 
Illustration of the concept and interpretation for power, type I, type S and type M errors 

(Gelman, 2015). Suppose that there is a hypothetical Student’s t(20)-distribution (black 

curve) for a true effect (blue vertical line) of 0.3 and a corresponding standard error of 1.0 

percent signal change, a scenario highlighted in purple in Fig. 4. Under the null hypothesis 

(red vertical line and dot-dashed green curve), two-tailed testing with a type I error rate of 

0.05 leads to having thresholds at ±2.086; FPR = 0.05 corresponds to the null distribution’s 

total area beyond these two critical values (marked with red diagonal lines). The power is the 

total area of the t(20)-distribution for the true effect (black curve) beyond these thresholds, 

which is 0.06 (shaded in blue). The type S error is the ratio of the blue area in the true effect 

distribution’s left tail beyond the threshold of −2.086 to the area in both tails, which is 23% 

here (i.e., the ratio of the “significant” area in the wrong-signed tail to that of the total 

“significant” area). If a random draw from the t(20)-distribution under the true effect 

happens to be 2.2 (small gray square), it would be identified as statistically significant at the 

0.05 level, and the resulting type M error would quantify the magnification of the estimated 

effect size as 2.2/0.3 ≈ 7.33, which is much larger than unity.
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Table 1:

Acronyms and terminology.

BML Bayesian multilevel NHST null hypothesis significance testing

FPR false positive rate NUTS No-U-Turn sampler

FWE family-wise error power chance of rejecting H0 when H0 is false

GLM general linear model PPC posterior predictive check

HMC Hamiltonian Monte Carlo type I chance of rejecting H0 when H0 is true (“false positive”)

LME linear mixed-effects type II failing to reject H0 when H0 is false (“false negative”)

LOO leave one out type M exaggerating the effect magnitude

MCMC Markov chain Monte Carlo type S estimating the effect with an incorrect sign

Neuroinformatics. Author manuscript; available in PMC 2020 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 51

Table 2:

ROIs and FWE correction for their associated clusters
a

voxel-wise p cluster threshold number of surviving ROIs ROIs

0.001 28 2 R PCC, PCC/PrC

0.005 66 4 R PCC, PCC/PrC., L IPL, L TPJ

0.01 106 4 R PCC, PCC/PrC., L IPL, L TPJ

0.05 467 4 R PCC, PCC/PrC., L IPL, L TPJ

0.05* 467 (4) (L aMTS/aMTG, R TPJp, vmPFC, dmPFC)

a
Monte Carlo simulations were conducted using a mixed exponential spatial autocorrelation function (Cox et al., 2017) instead of FWHM to 

determine the cluster threshold (voxel size: 3 × 3 × 3 mm3). The ROI abbreviations are listed in Table 3.

*
Special note for the last row (voxel-wise p-value of 0.05): four ROIs including L IPL, L TPJ, R PCC, PCC/PrC survived together with their 

clusters from the FWE correction, and the other four ROIs listed here (L aMTS/aMTG, R TPJp, vmPFC, and dmPFC) did not survive with their 
clusters but showed some evidence of effect when the cluster size requirement was dropped.
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Table 3:

MNI coordinates of the 21 ROIs
a

No ROI Coordinates (x, y, z)

1 R PCC (8, −59, 35)

2 R TPJp (56, −56,25)

3 R Insula (49, −8, −11)

4 L IPL (−55, −65, 27)

5 L SFG (−7, 58, 21)

6 R IFG (BA45) (47, 22, 6)

7 R IFG (BA9) (60, 25, 19)

8 L MTG (−51, −62, 5)

9 L CG (−5, 8, 42)

10 L IFG (−46, 24, 7)

11 ACC (0, 38, 10)

12 SGC (−2, 32, −8)

13 PCC/PrC (−2, −52, 26)

14 dmPFC (−2, 5, 14)

15 L TPJ (−46 −66, 18)

16 L vBG (−6,10, −8)

17 R vBG (6, 10, −8)

18 L aMTS/aMTG (−54, −10, −20)

19 R Amy/Hippo (24, −8, −22)

20 L Amy/Hippo (−24, −10, −20)

21 vmPFC (−2, 50, −10)

a
The 21 ROIs were chosen because of their potential involvement for the current experiment based on previous studies. Each ROI was created as a 

ball with a center at the coordinates (in millimeters) from the literature (Xiao et al., 2017) and a radius of 6 mm. ROI abbreviations: L, left 
hemisphere; R, right hemisphere; PCC/PrC, precuneus/posterior cingulate cortex; TPJp, posterior temporo-parietal junction; IPL, inferior parietal 
lobe; SFG, superior frontal gyrus; IFG, inferior frontal gyrus; aMTS/aMTG, anterior middle temporal sulcus/gyrus; CG, cingulate gyrus; ACC, 
anterior cingulate cortex; SGC, subgenual cingulate cortex; dmPFC, dorsomedial prefrontal cortex; vBG, ventral basal ganglia; Amy/Hippo, 
amygdala/hippocampus; vmPFC, ventromedial prefrontal cortex.
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Table 4:

Comparisons among GLM, LME and BML. (a) The seed-based correlation results at 21 ROIs from 124 

subjects were fitted with LME (using the R package lme4) and BML (using Stan with 4 chains and 1,000 

iterations) separately, in which overall ToMI was an explanatory variable. Random effects under LME 

correspond to group/entity-level effects plus family specific parameters (standard deviation σ for the residuals 

ϵij) under BML, while fixed effects under LME correspond to population-level effects under BML. The 

column headers SD, QI, and ESS are short for standard deviation, quantile interval, effect sample size, 

respectively. The parameter estimates from the LME and BML outputs (columns in gray) are very similar, 

even though priors were injected into BML. All R values under BML were less than 1.1, indicating that all the 

4 chains converged well. The effective sizes for the population- and group/entity-level effect of ToMI were 468 

and 947, respectively, enough to warrant quantile accuracy in summarizing the posterior distributions. 

Comparisons between GLM and BML. (b) To directly compare with BML, the Bayesianized version of GLM 

(15) was fitted with the data, and the higher predictive accuracy of BML is seen here with its substantial lower 

out-of-sample deviance measured by the leave-one-out information criterion (LOOIC), the widely applicable 

(or Watanabe-Akaike) information criterion (WAIC) through leave-one-out cross-validation, and the 

corresponding standard error (SE).

(a) Comparisons: LME and BML

Term
LME BML

Estimate SD Estimate SD 95% QI ESS R

sd(ξ0) 0.153 - 0.162 0.027 [0.118, 0.225] 551 1.00

sd(ξ1) 0.008 - 0.009 0.002 [0.005, 0.014] 947 1.00

corr(ξ0, ξ1) 0.88 0.773 0.161 [0.366, 0.985] 1054 1.00

sd(π) 0.076 - 0.077 0.006 [0.066, 0.091] 500 1.01

b0 0.168 0.034 0.167 0.036 [0.094, 0.241] 162 1.03

b1 0.007 0.004 0.007 0.004 [-0.001, 0.015] 468 1.00

σ 0.153 - 0.153 0.002 [0.149, 0.157] 2000 1.00

(b) Comparisons: GLM and BML

Model LOOIC SE

GLM −300.39 98.25

BML −2247.06 86.42

GLM - BML 1946.67 96.35
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Table 5:

Interpretation differences between NHST and Bayesian framework

Probability p Effect Interval [L, U]

NHST

If H0 is true, the probability of having the current result or more 
extreme is p (based on what would have occurred under other 

possible datasets); e.g., P(|T(y)| > tc|easy = difficult) = p, where 
T(y) is a statistic (e.g., Student’s t) based on data y and tc is a 

threshold.

If the study is exactly repeated an infinite number of times, the 
percentage of those confidence intervals will cover the true 

effectis 1 — p; e.g., P(L ≤ easy - difficult ≤ U) = 1 — p, where 
“easy - difficult” is treated as being fixed while L and U are 

random.

Bayesian

The probability of having the current result being different from 
zero is p (given the dataset); e.g., P(easy — difficult < L or easy 

— difficult > U|y) = p, where L and U are lower and upper 
bounds of the (1 — p)100% quantile interval.

The probability that the effect falls in the predictive interval is 
1 — p (given the data); e.g., P(L ≤ easy — difficult ≤ U|y) = 1 

— p, where “easy - difficult” is considered random while L and 
U are known conditional on data y.
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